Front. Cell. Infect. Microbiol. Frontiers in Cellular and Infection Microbiology Front. Cell. Infect. Microbiol. 2235-2988 Frontiers Media S.A. 10.3389/fcimb.2023.1144254 Cellular and Infection Microbiology Original Research Maternal vaginal microbiome composition does not affect development of the infant gut microbiome in early life Dos Santos Scott J. 1 Pakzad Zahra 2 3 Albert Arianne Y. K. 3 Elwood Chelsea N. 3 4 Grabowska Kirsten 4 Links Matthew G. 5 6 Hutcheon Jennifer A. 4 Maan Evelyn J. 3 Manges Amee R. 7 8 Dumonceaux Tim J. 9 Hodgson Zoë G. 10 Lyons Janet 4 Mitchell-Foster Sheona M. 4 Gantt Soren 11 Joseph K.S. 4 Van Schalkwyk Julie E. 4 Hill Janet E. 1 * Money Deborah M. 2 3 4 * 1 Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada 2 Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada 3 Women’s Health Research Institute, B.C. Women's Hopsital, Vancouver, BC, Canada 4 Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada 5 Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada 6 Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada 7 School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada 8 British Columbia Centre for Disease Control, Vancouver, BC, Canada 9 Agriculture and Agri-Food Canada, Saskatoon, SK, Canada 10 Midwifery Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada 11 Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada

Edited by: Carla R. Taddei, University of São Paulo, Brazil

Reviewed by: Laura K. Sycuro, University of Calgary, Canada; Antonella Marangoni, University of Bologna, Italy

*Correspondence: Deborah M. Money, deborah.money@ubc.ca; Janet E. Hill, janet.hill@usask.ca

This article was submitted to Microbiome in Health and Disease, a section of the journal Frontiers in Cellular and Infection Microbiology

30 03 2023 2023 13 1144254 14 01 2023 07 03 2023 Copyright © 2023 Dos Santos, Pakzad, Albert, Elwood, Grabowska, Links, Hutcheon, Maan, Manges, Dumonceaux, Hodgson, Lyons, Mitchell-Foster, Gantt, Joseph, Van Schalkwyk, Hill and Money 2023 Dos Santos, Pakzad, Albert, Elwood, Grabowska, Links, Hutcheon, Maan, Manges, Dumonceaux, Hodgson, Lyons, Mitchell-Foster, Gantt, Joseph, Van Schalkwyk, Hill and Money

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Birth mode has been implicated as a major factor influencing neonatal gut microbiome development, and it has been assumed that lack of exposure to the maternal vaginal microbiome is responsible for gut dysbiosis among caesarean-delivered infants. Consequently, practices to correct dysbiotic gut microbiomes, such as vaginal seeding, have arisen while the effect of the maternal vaginal microbiome on that of the infant gut remains unknown. We conducted a longitudinal, prospective cohort study of 621 Canadian pregnant women and their newborn infants and collected pre-delivery maternal vaginal swabs and infant stool samples at 10-days and 3-months of life. Using cpn60-based amplicon sequencing, we defined vaginal and stool microbiome profiles and evaluated the effect of maternal vaginal microbiome composition and various clinical variables on the development of the infant stool microbiome. Infant stool microbiomes showed significant differences in composition by delivery mode at 10-days postpartum; however, this effect could not be explained by maternal vaginal microbiome composition and was vastly reduced by 3 months. Vaginal microbiome clusters were distributed across infant stool clusters in proportion to their frequency in the overall maternal population, indicating independence of the two communities. Intrapartum antibiotic administration was identified as a confounder of infant stool microbiome differences and was associated with lower abundances of Escherichia coli, Bacteroides vulgatus, Bifidobacterium longum and Parabacteroides distasonis. Our findings demonstrate that maternal vaginal microbiome composition at delivery does not affect infant stool microbiome composition and development, suggesting that practices to amend infant stool microbiome composition focus factors other than maternal vaginal microbes.

vaginal microbiome infant stool microbiome infant gut cpn60 vaginal seeding birth mode microbiome Canadian Institutes of Health Research10.13039/501100000024

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The human gut harbours a diverse microbial community that provides a multitude of immunological and metabolic functions linked to infant development and homeostasis (Thomas et al., 2017). Dysbiosis of the infant gut microbiome appears to be associated with adverse health outcomes in childhood including asthma, atopy, obesity, and various autoimmune diseases (Stiemsma and Michels, 2018). Precisely how the infant gut microbiome is established and what influences optimal versus dysbiotic manifestations remain a key area in health research.

      Many studies have implicated mode of delivery as a major factor in the establishment of the early neonatal gut microbiome. One notable cohort study of nine infants from 2010 documented an abundance of Lactobacillus and other known vaginal genera in infants born vaginally, while infants delivered by caesarean section (C/S) exhibited stool microbiomes dominated by skin commensals, such as Staphylococcus and Corynebacterium (Dominguez-Bello et al., 2010). While more recent, larger studies have not identified vaginal microbes as key members of the neonatal or early infant gut microbiome, compositional differences between vaginally and C/S-delivered infants remain a consistent finding. An increased relative abundance of Escherichia, Bacteroides and Bifidobacterium spp. in infant stool microbiomes has been associated with vaginal birth, while increases in Streptococcus, Enterococcus and Klebsiella spp. have been associated with C/S delivery (Azad et al., 2016; Dominguez-Bello et al., 2016; Yassour et al., 2016; Reyman et al., 2019; Shao et al., 2019; Mitchell et al., 2020; Busi et al., 2021; Song et al., 2021; Wilson et al., 2021). Despite the substantive compositional differences between delivery mode groups in many studies, there is inconsistency surrounding the species involved and the persistence of this dysbiosis during early life (Azad et al., 2016; Chu et al., 2017; Stewart et al., 2018; Shao et al., 2019; Busi et al., 2021). Furthermore, previous studies tended not to differentiate between elective and emergency C/S, even though neonates delivered by emergency C/S may have experienced prolonged exposure to vaginal microbiota after rupture of the foetal membranes (Azad et al., 2016; Stewart et al., 2018; Shao et al., 2019).

      While the link between birth mode and infant gut microbiome development is well-described, there is little data regarding the impact of the maternal vaginal microbiome despite the latter being the primary microbial niche to which most birthing neonates are exposed. There is a substantive variability in vaginal microbiome composition between women and if the vaginal microbiome is functionally ‘seeding’ or otherwise influencing the infant gut microbiome as has been suggested (Dominguez-Bello et al., 2016), an association between the different vaginal microbiome profiles of women and their infants’ gut microbiomes should exist. In addition, this relationship should not be present in elective, pre-labour caesarean births but should be detectable after vaginal delivery (and likely to some degree, after emergency caesarean delivery following active labour and/or ruptured membranes). Presently, this association has not been proven; however, practices to correct dysbiotic infant gut microbiomes based on direct transfer of ‘missing’ vaginal microbes in cases of C/S delivery have arisen, though are not recommended by obstetric and gynaecological societies due to lack of efficacy data and potential safety concerns (Cunnington et al., 2016; Dominguez-Bello et al., 2016; Wharton and Birsner, 2017; Song et al., 2021).

      Given that the role of the maternal vaginal microbiome in infant gut microbiome development is understudied compared to factors such as delivery mode, breastfeeding, and infant antibiotic exposure, we aimed to investigate the effect of this microbial community on infant stool microbiomes in a large-scale, longitudinal study. Here, we used cpn60 microbiome profiling in a cohort of over 600 Canadian women and their newborns enrolled in the LEGACY study to determine whether the maternal vaginal microbiome composition influences or predicts that of the infant stool, and if this is affected by delivery mode as might be expected.

      Materials and methods Study population and data collection

      Healthy, low risk, pregnant individuals delivering at term were recruited into the Maternal Microbiome LEGACY Project from three hospitals across British Columbia (BC), Canada between March 2018-March 2020: BC Women’s Hospital + Health Centre (Vancouver), Surrey Memorial Hospital (Surrey) and University Hospital of Northern BC (Prince George). These centres were chosen with the goal of enrolling a large, sociodemographically diverse, multi-ethnic study population. Participants were enrolled based on the following inclusion criteria: >18 years of age, ≥37 weeks gestational age at delivery, no known major foetal anomalies and singleton or twin gestation. Participants were excluded based on the following criteria: inability to provide informed consent, participation in drug or probiotic trials, triplet or higher order gestation, placenta previa at delivery, placental abruption, and emergency intrapartum complications that preclude time for engagement in research.

      Informed written consent for study participation was obtained and ethics approval was granted by the University of British Columbia Children’s and Women’s Health Centre Research Ethics Board, harmonised with partner boards in the Fraser Health Authority and Northern Health Authority (Certificate no. H17-02253). Participants were recruited either during pregnancy or at the time of admission for delivery. Targeted recruitment of individuals with planned caesarean section and planned vaginal delivery ensured appropriate numbers of participants in the groups of interest. Target study population size was calculated to provide the best power to detect an interaction term in a multinomial regression model. Based on a maximum effect size of 0.41 from Human Microbiome Project data and a minimum of 0.2, a sample size of at least 600 would permit detection of effect sizes of at least 0.21 at power = 0.8, alpha = 0.05. Demographic and clinical data were collected by research staff via interview and medical chart review and entered into the Research Electronic Data Capture (REDCap) database securely hosted at BC Children’s Hospital Research Institute (Harris et al., 2019).

      Sample collection

      Maternal vaginal swabs of the posterior fornix and lateral vaginal wall were collected at first presentation to the labour/delivery assessment area, by a nurse, midwife, or clinician prior to examinations and procedures associated with the labour/delivery/birth process. Neonatal meconium, defined as the first collected stool specimen within 72 hours of birth, and two infant stool samples were collected at follow-up visits at 10 days ( ± 3 days) and 3 months ( ± 2 weeks) postpartum, respectively. Diapers with stool were collected by parents and kept refrigerated in sealed bags until collection by the study team at home visits either the same day or next day. Samples were transported to the lab on ice in a cooler, and stool was scraped from diapers using sterile spatulas in a biosafety cabinet and aliquoted into cryovials for storage at -80°C. Empty cryovials were processed in the same manner as samples to generate mock sample controls for assessment of contamination introduced during the handling process. Samples were shipped from the central collection lab at BC Women’s Health Research Institute to the University of Saskatchewan on dry ice and immediately stored at -80°C until DNA extraction.

      DNA extraction, library preparation and sequencing

      On the day of DNA extraction, 1 mL of sterile phosphate-buffered saline (pH 7.4) was added to thawed vaginal swab storage tubes. Following vigorous vortexing, swab fluid was transferred to sterile 1.5 mL tubes; 100 µL was taken as input for DNA extraction and the remainder was stored at -80°C. Stool was removed from cryovials using disposable sterile spatulas in a biosafety cabinet and 200 mg was transferred to sterile 2 mL tubes for DNA extraction. Total genomic DNA was extracted with a MagMax DNA Ultra 2.0 kit (Applied Biosystems, Waltham, MA, USA) on an automated KingFisher Flex platform (ThermoFisher Scientific, Waltham, MA, USA) which employs a combination of mechanical and chemical lysis. Extractions of vaginal and stool samples were performed on different days to limit cross-contamination. Mock samples (empty tubes left open during sample processing in Vancouver) and extraction-negative controls (400 µL sterile molecular biology-grade water) were included with each batch of samples to assess contamination. Kit controls were also generated by separate extraction of kit reagents only.

      The universal barcode region of the cpn60 gene was amplified as described previously (Fernando and Hill, 2021). A mixture of 20 plasmids harbouring cpn60 sequences from known vaginal microbiome species (mixed vaginal panel, MVP) mixed in equal proportions was used as a positive control (Dumonceaux et al., 2009). Amplicons were purified and indexed according to the standard Illumina 16S metagenomic sequencing library preparation protocol (Illumina, 2013). Indexed amplicons were quantified using Qubit fluorometry, normalised to 4 nM and pooled. Diluted 10 pM libraries (5% PhiX) were sequenced on an Illumina MiSeq platform using 500-cycle v2 reagent kits (401 R1, 101 R2). Only R1 sequence reads were used for analysis as read-pair overlap is not possible and only 150 bp of the cpn60 barcode region is required for accurate taxonomic identification (Vancuren et al., 2020).

      Quality control and analysis of sequencing data

      Amplification primers were removed using cutadapt (Martin, 2011) and reads were trimmed to an average Phred score of Q30 over a 4 bp window and minimum length of 150 bp using Trimmomatic (Bolger et al., 2014). Variant calling was performed in the QIIME2 (Bolyen et al., 2019) package using DADA2 (Callahan et al., 2016) to generate 150 bp amplicon sequence variants (Vancuren et al., 2020) (ASVs) and the resulting feature table was converted to tsv format. Taxonomy was assigned by comparison to a non-redundant version of cpnDB (cpndb_nr_20210316) using wateredBLAST, and ASVs with <55% sequence similarity to a cpnDB hit were discarded (Schellenberg et al., 2009; Vancuren and Hill, 2019). ASVs aligning to the same cpnDB entry were collapsed into ‘nearest neighbours’ and their frequencies combined.

      Feature tables were screened for potential contaminants in RStudio v.1.4.1717 [R v4.1.1 (R Core Team, 2022)] using the decontam (Davis et al., 2018) package. Any infant stool microbiomes with <1,000 reads were excluded from downstream analysis. Heatmaps were built from proportional abundance data of vaginal and stool microbiome profiles: all taxa were used for hierarchical clustering of samples (Ward linkage) based on Euclidean distance matrices calculated by the vegan (Oksanen et al., 2020) package. Clusters within vaginal, 10-day stool and 3-month stool microbiome profile datasets were defined algorithmically by silhouette indices using the NbClust (Charrad et al., 2014) package, and were bootstrapped to assess cluster support using the fpc (Hennig, 2007) package. Independence of maternal and infant microbiome clusters was examined using correspondence analysis (implemented by the FactoMineR (Lê et al., 2008) package) and Fisher’s exact test. Feature tables containing read counts for vaginal and stool samples underwent centre log-ratio transformation using the ALDEx2 (Fernandes et al., 2013) package prior to principal component analysis (PCA) and assessment of significant compositional differences using pairwise PERMANOVA (Anderson and Walsh, 2013). The aldex wrapper function was used to define differentially abundant taxa, while multivariable association analysis was conducted using the MaAsLin2 (Mallick et al., 2021) package. The Shannon-Weaver diversity index (H’) was calculated for 10-day and 3-month stool samples rarefied to 1,000 reads using the vegan (Oksanen et al., 2020) package, with differences between intrapartum antibiotic exposure and delivery mode groups investigated using Mann-Whitney U and Kruskal-Wallis tests in GraphPad Prism v9.3.1 Significant differences in the proportional abundance of differentially abundant infant stool taxa between antibiotic exposure groups were also investigated by Mann-Whitney U tests in GraphPad Prism v9.3.1, correcting for multiple testing by controlling the false discovery rate at <1%.

      Data availability

      All sequence data associated with this study were deposited in the NCBI Sequence Read Archive (BioProject PRJNA824125). Annotated R code describing reproducible analysis of sequencing data, processed feature tables containing nearest neighbour read counts, and microbiome cluster metadata are available to download from the online version of this manuscript ( Supplementary Files S1–S3 ).

      Results Clinical cohort and final sequencing dataset

      We enrolled 623 participants and their infants into the LEGACY study: 247 (39.6%) participants delivered vaginally, 221 (35.5%) had an elective C/S and 155 (24.9%) had an emergency C/S ( Supplementary Table S1 ), proportionally determined by our recruitment strategy. Mean age at delivery was 34.6 years, which is representative of our study hospitals’ delivery populations. Most participants self-identified as White (54.7%), 21.2% as Asian, 8.3% as South Asian, with lower percentages of other ethnicities. Twenty-one percent (21.3%) of participants tested positive for group B Streptococcus (GBS) on screening; 10.4% of participants had hypertension during pregnancy, and 16.5% were diagnosed with gestational diabetes (half of whom were treated with insulin). All participants undergoing elective C/S received intravenous antibiotic prophylaxis- usually cefazolin- approximately 1 hour prior to the procedure so that therapeutic concentrations are present in tissues at the time of skin incision (van Schalkwyk and Van Eyk, 2017) and those with GBS colonisation who were planning a vaginal delivery received intrapartum prophylaxis. The rate of prolonged duration of ruptured membranes (‗18 hours) was comparable between the vaginal and emergency C/S groups (9.3 vs 9.0%, respectively).

      We profiled the microbiomes of 623 maternal vaginal swabs taken on admission to labour and delivery, 142 meconium samples, 581 stool samples from 10-day-old infants and 462 stool samples from 3-month-old infants. Data for LEGACY meconium samples have been described elsewhere, demonstrating lack of a detectable microbiome signature that could be differentiated from background signal and no evidence of an in-utero stool microbiome (Dos Santos et al., 2021). Following quality control, 71,826,602 reads were retained from 621 vaginal microbiomes, 570 10-day stool microbiomes, 460 3-month stool microbiomes and 176 controls. Complete microbiome data was available for 442 dyads (i.e., vaginal and both stool microbiome profiles). In line with recent recommendations for microbiome studies (Eisenhofer et al., 2019), a complete list of all taxa found in negative controls is shown in Supplementary File S3 . Cross-contamination of negative controls with common vaginal and stool organisms was prevalent, with species such as Lactobacillus crispatus and Escherichia coli detected in many controls ( Supplementary File S3 ). Exogenous contaminants were also apparent: Pseudomonas tolaasii, an environmental species, was detected in 631 samples and 89 controls and was particularly associated with certain sequencing batches. Moreover, decontam identified this species as a potential contaminant: approximately 20% of all P. tolaasii reads were detected in negative controls- the highest proportion of any taxon in the dataset. Accordingly, all reads aligning to this species were removed from the dataset prior to further analyses. Nineteen of twenty positive control taxa were detected across all sequencing runs, the exception being Streptococcus macedonius, which was not present in the plasmid library in the second batch of positive controls used in the study. With this exception, positive control composition was consistent across sequencing batches, indicating the consistency of PCR amplification.

      Maternal vaginal microbiome composition

      Vaginal microbiomes were dominated by either one of several species of Lactobacillus, a single anaerobic species commonly associated with the vaginal environment, or were composed of a mixture of various anaerobes ( Supplementary Figure S1 ). The four Lactobacillus-dominated community state types (CSTs) commonly reported in studies of the vaginal microbiome were well represented. In accordance with other studies of pregnant individuals (Albert et al., 2015; Freitas et al., 2017; Freitas et al., 2018; Wells et al., 2020), profiles dominated by L. crispatus (CST I) were the single most abundant vaginal cluster (n = 263), followed closely by those dominated by various or mixed obligate anaerobes (CST IV; n = 241). Vaginal microbiomes dominated by L. gasseri (CST II; n = 37), L. iners (CST III; n = 45) and L. jensenii (CST V; n = 37) were markedly less common. Hierarchical clustering identified a total of 16 ‘cluster types’: the four commonly reported Lactobacillus CSTs above, plus a further 12 that divided CST IV into 12 separate clusters. Eleven of these represent a single dominant species (such as Megasphaera, Gardnerella and Bifidobacterium spp.), while the twelfth was comprised of vaginal microbiomes with mixed anaerobic populations. The distribution of maternal vaginal community state types was not significantly different between women undergoing rupture of membranes before or after sample collection (P = 0.238, Fisher’s exact test).

      Infant stool microbiome composition

      Among 10-day-old infants, diversity within stool microbiomes was remarkably low and most stool microbiomes were dominated by a single species (‗80% relative abundance). Enteric taxa often reported in gut microbiome studies were commonly detected, such as E. coli and various members of the genera Bifidobacterium, Enterococcus, Klebsiella, Bacteroides and Streptococcus (Yatsunenko et al., 2012; Shao et al., 2019) ( Figure 1A ). Stool samples clustered into 25 separate clusters, with 23 defined by a single dominant species, one defined by a mixture of E. coli, Bifidobacterium breve and Parabacteroides distasonis, and a final cluster of microbiomes typically composed of multiple species. The latter also included small sub-clusters of several samples where a single species was dominant (e.g., Bifidobacterium pseudocatenulatum or Enterobacter kobei).

      Infant stool microbiomes exhibit low diversity and are typically dominated by a single species: Hierarchical clustering of cpn60 stool microbiomes constructed from Euclidean distance matrices of proportional abundance data from 10-day (A) and 3-month (B) -old infants. The 35 most prevalent taxa are shown. From top to bottom, colour bars represent: infant stool microbiome clusters defined by nbClust, maternal vaginal community state type, intrapartum antibiotic exposure, and delivery mode.

      At 3 months, the number of microbiome clusters defined decreased to 14, with 12 defined by a single species comprising at least half of the microbiome by proportion ( Figure 1B ). A further cluster was defined by a combination of E. coli and several species of Bifidobacterium, with a final cluster of mixed microbiome profiles, containing several small sub-clusters dominated by various species. Infant stool microbiomes also exhibited a significant increase in alpha diversity (Shannon-Weaver diversity index, Figure 2A ; P <0.0001), with far more samples composed of multiple species found together at more even relative abundances.

      Infant stool microbiomes show no distinct clustering based on maternal vaginal CST: Principal component analysis of cpn60 stool microbiome profiles from 10-day (A) and 3-month (B) -old infants grouped by canonical maternal vaginal CSTs. No significant clustering was observed at 10-days (pairwise PERMANOVA, F = ¾1.77, R2 = ¾1.76, P = ‗0.13) or 3-months (F = ¾2.07, R2 = ¾3.41, P = ‗0.06). (C–E) Correspondence analysis of maternal vaginal CSTs (16 clusters) and infant stool clusters from 10-day-old infants, grouped by elective caesarean (C), emergency caesarean (D) or vaginal delivery (E).

      At both 10 days and 3 months of life, clusters dominated by E. coli represented the largest number of samples of any single cluster (n = 116 (20.4%) and 121 (26.3%), respectively). When considering all clusters for which E. coli was a dominant species, this increased to 138 (24.3%) and 213 (46.4%), respectively. Bifidobacterium spp.– widely recognised as keystone infant gut species (Gotoh et al., 2019)- and various species of Klebsiella were also prevalent in infant gut microbiome profiles at both timepoints. Clusters defined by these genera accounted for 111 (19.5%) and 117 (20.5%) samples from 10-day-old infants, and 168 (36.5%) and 74 (16.0%) samples from 3-month-old infants, respectively. Relative abundances of E. coli and Bifidobacterium spp. were significantly higher at 3 months of life ( Supplementary Figure 2B left & middle; P <0.0001 and <0.001 respectively), while no difference was observed for Klebsiella spp. ( Supplementary Figure S2B right, P = 0.942).

      Vaginal microbiome exposure does not explain differences in infant stool microbiome composition, even among vaginally-delivered infants

      We next assessed if the maternal vaginal microbiome composition could explain differences in infant stool microbiome composition between birth modes. PCA of infant stool microbiomes showed no significant clustering of microbiome profiles at 10 days or 3 months by maternal CST ( Figures 2A, B , P ‗0.13 or ‗0.24 for all comparisons, respectively). Correspondence analysis also demonstrated no evident co-clustering of maternal and infant clusters at either timepoint ( Figures 2C–E and Supplementary Figure S3 ), and no differences were observed in the distribution of maternal vaginal microbiome clusters among infant stool microbiome clusters regardless of delivery mode ( Supplementary Figure S3D , P >0.22).To investigate this further, we assessed the transition of 442 mother-infant dyads with complete profiling data between microbiome clusters over time. Regardless of birth mode, no evident patterns in the flow of microbiomes from maternal to infant clusters were discernible ( Figure 3 ), with most infants in almost all 10-day clusters originating from mothers whose vaginal microbiome clusters were dominated by L. crispatus or various anaerobes (i.e., the two largest maternal clusters). Exceptions to this were exclusively seen in infant stool clusters comprised of a few or even single samples. Conversely, maternal vaginal clusters were distributed among stool clusters according to their frequency in the overall maternal population, indicating that the maternal vaginal microbiome holds no predictive value for infant stool microbiome composition. Lastly, we evaluated the stability of infant stool microbiomes over time and noted that over 75% of infants belonged to a cluster with a different ‘dominant’ species at 3 months compared to the 10-day sample, reflecting the dynamic nature of the gut microbiome in early life ( Supplementary Table S2 ). Of the seven pairs of twins enrolled in the LEGACY study, only two pairs shared the same stool microbiome cluster at 10 days of life. At 3 months, four of five pairs of twins (two lost to follow-up) shared the same microbiome cluster.

      Composition of the maternal vaginal microbiome does not predict infant stool microbiome composition: Alluvial flow of mother-infant dyads from pre-delivery maternal vaginal microbiome clusters to 3-month-old infant stool microbiome clusters for infants delivered by elective C/S (A), by emergency C/S (B) and vaginally (C). Letters and numbers on stacked bars and side legend indicate microbiome clusters from Supplementary Figure S1 and Figure 1 . See Supplementary Figure S9 for colour legend.

      To confirm the lack of effect of maternal vaginal microbiome composition, we searched for taxa present in infant stool microbiomes at both timepoints which were significantly associated with each of the five canonical maternal CSTs. After correcting for multiple testing, MaAsLin2 identified two taxa- Lactobacillus gasseri and Actinomyces vaccimaxillae- which were significantly associated with infants born to mothers from CST II (L. gasseri-dominant vaginal microbiomes) at 10 days of life ( Supplementary File S3 ). However, this association did not hold when comparing the relative abundances of these taxa across stool microbiomes stratified by maternal CST ( Supplementary Figure S4 , P >0.137, all comparisons). On the contrary, this is likely the result of differences in the distribution of samples where the abundance of these two taxa is extremely low, but not zero, among CST groups. In 3-month-old infants, a single taxon, Hungatella hathewayi, was significantly associated with maternal CST II, though only 267 reads of this taxon were detected across 10 samples in the entire dataset, making this observation unreliable.

      Given the assumption that maternal microbiome exposure drives differences in infant stool microbiomes between vaginally and C/S-delivered infants, we also assessed whether these differences could be seen in the LEGACY cohort. For 10-day-old infant stool microbiomes, principal component analysis (PCA) showed varying degrees of separation by birth mode, but appreciable overlap of all groups. However, many vaginally-delivered infants clustered separately from caesarean-born infants ( Supplementary Figure 5A , upper-right quadrant), and significant differences in microbiome composition by birth mode were detected for all pairwise comparisons (P <0.01). Scores across the first principal component, where most separation occurred at 10 days of life, were higher in vaginally-delivered infants compared to both elective and emergency C/S infants ( Supplementary Figure 5B ; P <0.0001) and were also higher in infants delivered by emergency rather than elective C/S (P <0.01). At 3-months of life, compositional differences in infant stool microbiomes were vastly reduced, with high amounts of overlap among all birth modes ( Supplementary Figure 5C ). Despite this, differences between vaginally delivered infants and both emergency and elective C/S deliveries remained statistically significant (P <0.05, both comparisons). No differences in alpha diversity were observed at either timepoint ( Supplementary Figures 5D, E , P >0.99, all comparisons).

      Intrapartum antibiotic administration confounds microbiome differences attributed to delivery mode

      We next attempted to identify other clinical factors that could explain differences in infant stool microbiomes commonly attributed to birth mode, including breastfeeding modality, intrapartum antibiotics, maternal ethnicity, infant sex and chorioamnionitis. Hierarchical clustering suggested that intrapartum administration of antibiotics to mothers was associated with specific stool microbiome clusters at 10 days of life ( Supplementary Figure S6 ). Stratifying infant stool microbiomes by maternal antibiotic administration during labour and delivery for any reason (e.g., caesarean delivery, GBS colonisation, suspected chorioamnionitis, etc.), PCA showed significant clustering of 10-day-old infant stool microbiomes based on antibiotic exposure ( Figure 4A , P <0.001), which was less evident, albeit still statistically significant at 3 months ( Figure 4B , P <0.05). PC1 scores for 10-day-old stool microbiomes were significantly lower in infants exposed to antibiotics when considering all infant stool microbiomes but also when restricting analysis to vaginally-delivered infants only ( Figures 4C, D ; P <0.0001 and <0.001, respectively). The similarity of these data to analyses grouped by delivery mode implies that delivery mode alone does not account for differences between infant stool microbiomes. To explore this further, we investigated the independent effects of delivery mode (comparing elective C/S infants with vaginally-delivered infants with antibiotic exposure) and intrapartum antibiotics (vaginally delivered infants with and without antibiotic exposure) on 10-day-old infant stool microbiomes. Both factors independently affected microbiome composition to a degree ( Supplementary Figure S7 ; delivery mode, P <0.05; antibiotics, P <0.001).

      Intrapartum antibiotic exposure confounds infant stool microbiome differences commonly attributed to delivery mode: (A, B) Principal component analysis of cpn60 stool microbiome profiles grouped by antibiotic exposure for 10-day (A, pairwise PERMANOVA, P <0.001) and 3-month (B, P <0.05) -old infants. (C, D) Median scores across the first principal component for all 10-day-old infant stool microbiomes (C) and those delivered vaginally (D), grouped by antibiotic exposure (bars indicate 95% CI). (E, F) Alpha diversity of stool microbiomes from 10-day (E) and 3-month (F) -old infants (bars indicate 1.5x IQR) (C–F, Mann-Whitney U, *** P <0.001, **** P <0.0001, ns, not significant). (G, H) Differentially abundant taxa in 10-day-old infant stool microbiomes as determined by ALDEx2 (G) and MaAsLin2 (H). Bar colour indicates antibiotic exposure. (I, J) Mean relative abundances ( ± s.d.) of differentially abundant taxa in 10-day (I) and 3-month (J) -old infant stool microbiomes. Asterisks indicate significantly different mean abundance (FDR-corrected Mann-Whitney U test).

      Although alpha diversity did not differ by antibiotic exposure ( Figures 4E, F ; P = 0.156 and 0.642, respectively), differential abundance analysis identified species driving antibiotic-mediated microbiome differences. In 10-day-old infants, Klebsiella michiganensis, Haemophilus parainfluenzae, Enterococcus faecalis and Streptococcus parasanguinis were significantly more abundant in antibiotic-exposed infants, whereas Escherichia. coli, Parabacteroides distasonis, Bacteroides vulgatus, and Bifidobacterium longum subsp. longum were overrepresented in unexposed infants ( Figure 4G ; Supplementary File S3 ). These findings were supported by generalised linear modelling, with MaAsLin2 demonstrating associations between antibiotic exposure and many of the same species in infant stool microbiomes ( Figure 4H ; Supplementary File S3 ). Additionally, Klebsiella pneumoniae was associated with perinatal antibiotic exposure, while Bifidobacterium bifidum and Collinsella aerofaciens were associated with a lack thereof. When grouping infant stool microbiomes by delivery mode, both ALDEx2 and MaAsLin2 identified many of the same differentially abundant species as above when comparing vaginal and elective C/S deliveries; however, differences between emergency C/S and vaginal deliveries were more subtle. ( Supplementary Figure S8 ). At 3 months, P. distasonis was the only differentially abundant taxon defined by ALDEx2 and was overrepresented in unexposed/vaginally-delivered infants, while MaAsLin2 identified an association only between elective C/S and Enterococcus faecalis. ( Supplementary Figure S8 ; Supplementary File S3 ). Differential abundance data were corroborated by comparing relative abundances of these taxa between antibiotic exposure groups. All abundances were significantly different between groups in 10-day-old infants, but only P. distasonis and E. faecalis exhibited significantly different abundances at 3 months ( Figures 4I, J ).

      Assessment of maternal microbiome distribution among infant stool microbiome clusters by antibiotic exposure rather than birth mode did not alter the prior conclusion that the maternal vaginal microbiome is not predictive of infant stool microbiome composition ( Supplementary Figure S9 ). Finally, six infants in the LEGACY cohort underwent vaginal seeding: a practice whereby maternal vaginal secretions are transferred to CS-delivered infants in an effort to correct birth mode-related dysbiosis. Therefore, we examined their stool microbiome profiles to determine if the procedure had restored taxa associated with vaginally-delivered infants. Only 1/6 infants undergoing vaginal seeding showed an abundance of taxa associated with vaginal delivery at either timepoint: the remaining 5/6 were dominated by taxa associated with C/S ( Figure 5 ).

      Vaginal seeding does not appear to restore the stool microbiome of C/S-delivered infants: Microbiome profiles of the six infants in the LEGACY cohort receiving supplementary maternal vaginal microbes by post-partum vaginal seeding at 10 days (A) and 3 months (B) of life. Inset plot in (A) represents 53.6% of the total cpn60 microbiome profile of infant 4 collapsed into ‘Other’, denoted by an asterisk *.

      Discussion

      In one of the largest paired mother-infant cohorts to date, we demonstrated that maternal vaginal microbiome composition does not adequately predict the composition of the infant stool microbiome at 10 days or 3 months of life, regardless of delivery mode. Furthermore, major differences in infant stool microbiome composition which are commonly attributed to delivery mode (specifically a lack of exposure to the maternal vaginal microbiome) are explained at least in part by intrapartum antibiotic administration, confounding the potential effect of delivery mode.

      Maternal vaginal microbiomes defined in this study were typical of the vaginal environment and reflected the results of prior studies (Albert et al., 2015; Freitas et al., 2017; Freitas et al., 2018; Wells et al., 2020) (low diversity, Lactobacillus-dominant), though the larger number of participants resulted in the separation of CST IV into twelve distinct clusters, each dominated by organisms typically associated with bacterial vaginosis. Infant stool microbiome profiles were similarly of low complexity, and with few exceptions, exhibited dominance of a single species in contrast to the highly diverse and species-rich gut communities of adults or older children (Yatsunenko et al., 2012). However, there was a high degree of heterogeneity in the species defining each stool cluster, particularly at 10 days of life.

      Contrary to early reports of infant gut microbiota, we did not detect an abundance of Lactobacillus spp. in stool microbiomes of infants regardless of birth mode. We did, however, observe significant compositional differences by mode of delivery in early life, including between elective and emergency C/S deliveries. However, all individuals in the LEGACY cohort who underwent caesarean section received intravenous antibiotics (mostly cefazolin; Supplementary Table S1 ) as well as 70 who delivered vaginally (28.3%) after receiving antibiotic prophylaxis, (primarily penicillin for Group B streptococcal prophylaxis), highlighting intrapartum antibiotic exposure as a potential confounder of this relationship. Several previous studies identifying delivery mode as a mediator of infant stool microbiome composition either do not consider this confounder, or do not make clear the extent to which data have been adjusted for it (Dominguez-Bello et al., 2010; Bäckhed et al., 2015; Brumbaugh et al., 2016; Hill et al., 2017). In contrast, Reyman and colleagues explicitly addressed this issue in a study of 120 infants by administering antibiotic prophylaxis after clamping of the umbilical cord and found that delivery mode exerted a clear effect on infant stool microbiomes independent of antibiotic exposure (Reyman et al., 2019). However, administration of antibiotic prophylaxis prior to skin incision for C/S is widespread in clinical practice due to the improvement in post-surgical infection rates (van Schalkwyk and Van Eyk, 2017), therefore the effect of antibiotics on infant microbiomes cannot be discounted. While we observed a similar, independent effect of delivery mode on infant microbiomes, we also found an independent effect of intrapartum antibiotic use in vaginally-delivered infant stool microbiomes in addition to significant differences in ordination across the first principal component (increased E. coli, Bifidobacterium spp., P. distasonis). Similar findings have been reported by others studying the impact of intrapartum antibiotics (Azad et al., 2016; Bokulich et al., 2016; Yassour et al., 2016); therefore, while delivery mode may contribute to early life microbiome differences, it is often confounded by maternal antibiotic exposure during labour and delivery.

      We identified three taxa in infant stool microbiomes significantly associated with maternal CST II; however, these taxa comprised relatively little of the total relative abundance of stool microbiomes when they were present (<1%). We attribute this finding to differences in the distribution of non-zero relative abundances between maternal CST groups and maintain that the maternal vaginal microbiome does not influence early-life stool microbiome composition in infants. Species that we identified as significantly different between antibiotic-exposed and -unexposed infants at 10 days of life overlapped well with taxa identified as significantly different between C/S and vaginally delivered infants, respectively. Klebsiella spp (Reyman et al., 2019; Shao et al., 2019)., Enterococcus ( Azad et al., 2016; Reyman et al., 2019; Shao et al., 2019; Song et al., 2021) (spp. and specifically, E. faecalis), and Streptococcus parasanguinis ( Shao et al., 2019) have all been reported as significantly overrepresented in stool microbiomes of C/S-delivered infants. Likewise, Escherichia coli ( Bäckhed et al., 2015; Stewart et al., 2018; Reyman et al., 2019; Shao et al., 2019), Parabacteroides spp (Bäckhed et al., 2015; Bokulich et al., 2016; Hill et al., 2017; Reyman et al., 2019; Shao et al., 2019). (and P. distasonis), Bacteroides spp (Bäckhed et al., 2015; Azad et al., 2016; Bokulich et al., 2016; Dominguez-Bello et al., 2016; Hill et al., 2017; Stewart et al., 2018; Reyman et al., 2019; Shao et al., 2019)., and Bifidobacterium ( Stewart et al., 2018; Reyman et al., 2019; Shao et al., 2019; Song et al., 2021) (spp. plus B. longum) have all been identified as overrepresented taxa in vaginally-delivered infants. There are conflicting reports on the persistence of delivery mode or antibiotic-associated microbiome differences throughout the initial year of life, ranging from no difference after 6 weeks, to detectable differences at 1 year (Azad et al., 2016; Chu et al., 2017; Busi et al., 2021; Song et al., 2021). Notably, more recent large scale-studies including ours, demonstrate convergence of vaginally- and C/S-delivered infant stool microbiomes within the first few months of life (Stewart et al., 2018; Shao et al., 2019; Song et al., 2021).

      In contrast to other studies, members of the genus Bacteroides were not abundant in the majority of infant stool microbiomes from the LEGACY cohort. This may be due to the choice of molecular barcoding gene (cpn60 in the present study vs.16S rRNA hypervariable regions in almost all aforementioned studies), different sampling timepoints, and the plethora of different DNA extraction kits, all of which can affect microbiome composition considerably (Videnska et al., 2019; Soriano-Lerma et al., 2020). Despite this, Bacteroides vulgatus and Bacteroides uniformis were still identified as key organisms contributing to the differences between infant stool microbiomes at 10 days of life, highlighting the importance of this genus in the developing neonatal microbiome.

      The lack of effect of maternal vaginal microbiome composition on the developing neonatal stool microbiome suggests the need to focus on factors impacting its development, including antibiotic exposure. In addition, the inability of vaginal seeding to ‘restore’ stool microbiomes of C/S-delivered infants in the small subset undergoing the procedure, as demonstrated by our data, supports the lack of validity behind the practice of vaginal seeding. Initial work on the efficacy of vaginal seeding showed a failure to restore the Bacteroides signature often observed in vaginally delivered infants and that anal swab microbiomes from seeded infants were more often classified as originating from a C/S-delivered infant rather than a vaginally delivered infant (Dominguez-Bello et al., 2016). Recent trials examining the effect of post-natal vaginal seeding on microbiome development in C/S-delivered infants have been contradictory. Song and colleagues reported a small shift in the composition of rectal swab microbiomes from vaginally seeded infants born by C/S towards those of vaginally-delivered infants across the first months of life (Song et al., 2021). However, Wilson et al. failed to find any impact of vaginal seeding on stool microbiomes in a randomised controlled trial from C/S-delivered infants, in which stool microbiomes from seeded and placebo groups both exhibited differences compared to vaginally-delivered infants at 1 month of life (Wilson et al., 2021). While larger trials are still ongoing, any effect of vaginal seeding appears to be transient and only evident immediately after birth prior to the impact of breastfeeding and other environmental exposures.

      Similarly, data assessing the impact of vaginal microbiota at birth on infant stool microbiome development are limited: Dominguez-Bello and co-workers reported that rectal swab microbiomes of newborn infants closely resembled that of the maternal vagina in four vaginally delivered infants (Dominguez-Bello et al., 2010). Comparable findings were recorded by Chu et al. (2017), although both groups collected infant samples within 24 hours of birth and neither study was specifically designed to investigate the effect of vaginal microbiome composition. However, given that maternal vaginal microbiome composition does not influence that of the infant stool, we suggest that the impact of transferring a mother’s vaginal microbiome, if any, is likely to be limited.

      The lack of influence exerted by the maternal vaginal microbiome on infant stool microbiome development underscores the much larger contributions of other maternal microbiomes, such as those of the breast milk and maternal gut. Breastfeeding is associated with higher abundances of Bifidobacterium spp. in infant stool within the first weeks and months of life (Ho et al., 2018) and metagenomic data on strain-specific transmission indicate vertical transfer of maternal faecal strains to the early infant gut. Identical strains from the genera Ruminococcus, Bifidobacterium, Bacteroides and members of the Clostridiales order have been identified in mother-infant pairs by multiple independent groups (Yassour et al., 2016; Asnicar et al., 2017; Ferretti et al., 2018; Wilson et al., 2021), particularly in the early days and weeks of life. Conversely, while strain transmission from the maternal vagina to infant gut has also been reported, this appears to be less common (Ferretti et al., 2018; Wilson et al., 2021). Together with our work, these data suggest more focus should be placed on maternal sources other than the vaginal microbiome when investigating the origins and development of infant microbiomes.

      Our study is among the largest to characterise infant stool microbiomes within the first days of life and to directly investigate the influence of the maternal vaginal microbiome on neonatal stool microbiome development. Furthermore, sequencing of the cpn60 universal barcode enabled characterisation of microbiomes from the LEGACY cohort at superior resolution compared to the 16S rRNA gene (often limited to genus-level resolution), owing to greater sequence heterogeneity between closely related species (Links et al., 2012). Pairwise comparisons of cpn60 and 16S rRNA gene sequences in a collection of 1,349 genome sequences determined that the median sequence similarity of cpn60 universal target regions to the next closest sequence was significantly lower than that of the 16S rRNA gene hypervariable regions, ranging from 82-92% for the former and 96-100% for the latter (Links et al., 2012). Likewise, a recent evaluation of cpnDB showed that median intra-genus sequence similarities of cpn60 were routinely below 90% (Vancuren and Hill, 2019), consistent with earlier literature demonstrating the higher level of resolution achieved when using this gene (Goh et al., 1996; Goh et al., 2000; Hill et al., 2006). Accordingly, application of cpn60 microbiome profiling in studies of the vaginal microbiome revealed previously unseen CSTs delineated by different Gardnerella vaginalis subgroups (Albert et al., 2015). The genus Gardnerella was recently emended to describe four named species of Gardnerella ( Vaneechoutte et al., 2019) which correspond to the subgroups defined by cpn60 sequencing; however, these differences were not apparent based on sequence similarity of their 16S rRNA genes (Paramel Jayaprakash et al., 2012).

      Our study has several limitations. Most individuals in the LEGACY cohort were white or Asian, resulting in a lower representation of black, indigenous and hispanic participants. Studies have repeatedly found a higher prevalence of L. iners and non-Lactobacillus dominant vaginal microbiomes (including Gardnerella spp. and Atopobium vaginae) in these groups compared to white individuals (Wells et al., 2020). Increased representation of such microbiomes in our study would have been helpful to increase the numbers of smaller vaginal microbiome clusters dominated by non-Lactobacillus species and maximise the generalisability of our findings. The distribution of ethnicities in the LEGACY study closely reflects that of the province where the study cohort was recruited, and the proportion of non-white participants was higher than in many other studies (Yassour et al., 2018; Maqsood et al., 2019). Furthermore, we did not formally compare infant stool microbiomes by breastfeeding modality; however, very few infants at either timepoint were exclusively formula-fed which precluded meaningful analysis, and there did not appear to be any difference in distribution of infant stool microbiome clusters by exclusive vs. non-exclusive breastfeeding. As part of the LEGACY project, breast milk samples and areola swabs were collected from mothers as part of the 10-day and 3-month postpartum visits, and analyses of these samples are ongoing.

      Overall, we have shown in a large cohort of mother-infant pairs that exposure to the maternal vaginal microbiome during birth, as well as its composition, does not specifically influence the development of the infant stool microbiome in early infancy. Moreover, we have demonstrated that associations of delivery mode and infant stool microbiome composition appear to be impacted by exposure to intrapartum antibiotics and not primarily related to mode of delivery, which points to modifiable factors for future considerations.

      Data availability statement

      All sequence data associated with this study were deposited in the NCBI Sequence Read Archive (BioProject PRJNA824125). Annotated R code describing reproducible analysis of sequencing data, processed feature tables containing nearest neighbour read counts, and microbiome cluster metadata are available to download from the online version of this article (Supplementary Files S1–S3).

      Ethics statement

      The studies involving human participants were reviewed and approved by University of British Columbia Children’s and Women’s Health Centre Research Ethics Board, harmonized with partner boards in the Fraser Health Authority and Northern Health Authority (Certificate no. H17-02253). The patients/participants provided their written informed consent to participate in this study.

      Author contributions

      DM devised the original concept of the work, and all authors contributed to study design. ZP and EM contributed to clinical data acquisition. JH and SD conceived and planned the experiments and SD conducted the experiments. SD performed the data analysis with help from AA. All authors contributed to interpretation of the results. SD wrote the first draft of the manuscript. ZP and DM wrote sections of the manuscript. All authors contributed to the article and approved the submitted version.

      Funding

      This study was funded by a Canadian Institutes of Health Research grant. The funders had no role in the study design, data analysis or writing of the manuscript.

      Acknowledgments

      We extend our sincere thanks to all of the participants in the Maternal Microbiome Legacy Project and their infants for taking the time to participate in this study. We also thank Champika Fernando for her assistance with microbiome profiling, Iveoma Udevi, Beheroze Sattha, Melissa Watt, Lilija Berngards, Nimrat Binning, and Sukhpreet Buttar for their work on participant recruitment, sample and data collection, and finally the nursing, midwifery, and clinical staff at BC Women’s Hospital, Surrey Memorial Hospital and University Hospital of Northern BC for their assistance in study recruitment and sample collection.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fcimb.2023.1144254/full#supplementary-material

      References Albert A. Y. K. Chaban B. Wagner E. C. Schellenberg J. J. Links M. G. Van Schalkwyk J. . (2015). A study of the vaginal microbiome in healthy Canadian women utilizing cpn60- based molecular profiling reveals distinct gardnerella subgroup community state types. PloS One 10 (8), e0135620. doi: 10.1371/journal.pone.0135620 Anderson M. J. Walsh D. C. I. (2013). PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 83 (4), 557574. doi: 10.1890/12-2010.1 Asnicar F. Manara S. Zolfo M. Truong D. T. Scholz M. Armanini F. . (2017). Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2 (1), e00164-16. doi: 10.1128/mSystems.00164-16 Azad M. Konya T. Persaud R. Guttman D. Chari R. Field C. . (2016). Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: A prospective cohort study. Br. J. Obstet Gynaecol. 123 (6), 983993. doi: 10.1111/1471-0528.13601 Bäckhed F. Roswall J. Peng Y. Feng Q. Jia H. Kovatcheva-Datchary P. . (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17 (5), 690703. doi: 10.1016/j.chom.2015.04.004 Bokulich N. A. Chung J. Battaglia T. Henderson N. Jay M. Li H. . (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8 (343), 82. doi: 10.1126/scitranslmed.aad7121 Bolger A. M. Lohse M. Usadel B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics. 30 (15), 21142120. doi: 10.1093/bioinformatics/btu170 Bolyen E. Rideout J. R. Dillon M. R. Bokulich N. A. Abnet C. C. Al-Ghalith G. A. . (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37 (8), 852857. doi: 10.1038/s41587-019-0209-9 Brumbaugh D. E. Arruda J. Robbins K. Ir D. Santorico S. A. Robertson C. E. . (2016). Mode of delivery determines neonatal pharyngeal bacterial composition and early intestinal colonization. J. Pediatr. Gastroenterol. Nutr. 63 (3), 320328. doi: 10.1097/MPG.0000000000001124 Busi S. B. de Nies L. Habier J. Wampach L. Fritz J. V. Heintz-Buschart A. . (2021). Persistence of birth mode-dependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life. ISME Commun. 1, 8. doi: 10.1038/s43705-021-00003-5 Callahan B. J. McMurdie P. J. Rosen M. J. Han A. W. Johnson A. J. A. Holmes S. P. (2016). DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13 (7), 581583. doi: 10.1038/nmeth.3869 Charrad M. Ghazzali N. Boiteau V. Niknafs A. (2014). NbClust: An r package for determining the relevant number of clusters in a data set. J. Stat. Software 61 (6), 136. doi: 10.18637/jss.v061.i06 Chu D. M. Ma J. Prince A. L. Antony K. M. Seferovic M. D. Aagaard K. M. (2017). Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23 (3), 314326. doi: 10.1038/nm.4272 Cunnington A. J. Sim K. Deierl A. Kroll J. S. Brannigan E. Darby J. (2016). “Vaginal seeding” of infants born by caesarean section. Br. Med. J. 352, i227. doi: 10.1136/bmj.i227 Davis N. M. Proctor D. M. Holmes S. P. Relman D. A. Callahan B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 6 (1), 226. doi: 10.1186/s40168-018-0605-2 Dominguez-Bello M. G. Costello E. K. Contreras M. Magris M. Hidalgo G. Fierer N. . (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U S A. 107 (26), 1197111975. doi: 10.1073/pnas.1002601107 Dominguez-Bello M. G. De Jesus-Laboy K. M. Shen N. Cox L. M. Amir A. Gonzalez A. . (2016). Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22 (3), 250253. doi: 10.1038/nm.4039 Dos Santos S. J. Pakzad Z. Elwood C. N. Albert A. Y. K. Gantt S. Manges A. R. . (2021). Early neonatal meconium does not have a demonstrable microbiota determined through use of robust negative controls with cpn60-based microbiome profiling. Microbiol. Spectr. 9 (2), e00067-21. doi: 10.1128/Spectrum.00067-21 Dumonceaux T. J. Schellenberg J. Goleski V. Hill J. E. Jaoko W. Kimani J. . (2009). Multiplex detection of bacteria associated with normal microbiota and with bacterial vaginosis in vaginal swabs by use of oligonucleotide-coupled fluorescent microspheres. J. Clin. Microbiol. 47 (12), 40674077. doi: 10.1128/JCM.00112-09 Eisenhofer R. Minich J. J. Marotz C. Cooper A. Knight R. Weyrich L. S. (2019). Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 27 (2), 105117. doi: 10.1016/j.tim.2018.11.003 Fernandes A. D. Macklaim J. M. Linn T. G. Reid G. Gloor G. B. (2013). ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-seq. PloS One 8 (7), e67019. doi: 10.1371/journal.pone.0067019 Fernando C. Hill J. E. (2021). cpn60 metagenomic amplicon library preparation for the illumina MiSeq platform. Springer-Nature Protocol Exchange. doi: 10.21203/rs.3.pex-1438/v1 Ferretti P. Pasolli E. Tett A. Asnicar F. Gorfer V. Fedi S. . (2018). Mother-to-Infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24 (1), 133145. doi: 10.1016/j.chom.2018.06.005 Freitas A. C. Bocking A. Hill J. E. Money D. M. (2018). Increased richness and diversity of the vaginal microbiota and spontaneous preterm birth. Microbiome. 6 (1), 117. doi: 10.1186/s40168-018-0502-8 Freitas A. C. Chaban B. Bocking A. Rocco M. Yang S. Hill J. E. . (2017). The vaginal microbiome of pregnant women is less rich and diverse, with lower prevalence of mollicutes, compared to non-pregnant women. Sci. Rep. 7 (1), 9212. doi: 10.1038/s41598-017-07790-9 Goh S. H. Facklam R. R. Chang M. Hill J. E. Tyrrell G. J. Burns E. C. M. . (2000). Identification of enterococcus species and phenotypically similar lactococcus and vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. J. Clin. Microbiol. 38 (11), 39533959. doi: 10.1128/JCM.38.11.3953-3959.2000 Goh S. H. Potter S. Wood J. O. Hemmingsen S. M. Reynolds R. P. Chow A. W. (1996). HSP60 gene sequences as universal targets for microbial species identification: Studies with coagulase-negative staphylococci. J. Clin. Microbiol. 34 (4), 818823. doi: 10.1128/jcm.34.4.818-823.1996 Gotoh A. Ojima M. N. Katayama T. (2019). Minority species influences microbiota formation: the role of bifidobacterium with extracellular glycosidases in bifidus flora formation in breastfed infant guts. Microb. Biotechnol. 12 (2), 259264. doi: 10.1111/1751-7915.13366 Harris P. A. Taylor R. Minor B. L. Elliott V. Fernandez M. O’Neal L. . (2019). The REDCap consortium: Building an international community of software platform partners. J. BioMed. Inform. 95, 103208. doi: 10.1016/j.jbi.2019.103208 Hennig C. (2007). Cluster-wise assessment of cluster stability. Comput. Stat. Data Anal. 52 (1), 258271. doi: 10.1016/j.csda.2006.11.025 Hill C. J. Lynch D. B. Murphy K. Ulaszewska M. Jeffery I. B. O’Shea C. A. . (2017). Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET cohort. Microbiome. 5 (1), 4. doi: 10.1186/s40168-016-0213-y Hill J. E. Paccagnella A. Law K. Melito P. L. Woodward D. L. Price L. . (2006). Identification of campylobacter spp. and discrimination from helicobacter and arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J. Med. Microbiol. 55 (4), 393399. doi: 10.1099/jmm.0.46282-0 Ho N. T. Li F. Lee-Sarwar K. A. Tun H. M. Brown B. P. Pannaraj P. S. . (2018). Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 9, 4169. doi: 10.1038/s41467-018-06473-x Illumina (2013) 16S metagenomic sequencing library preparation. Available at: https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html. S. Josse J. Husson F. (2008). FactoMineR: An r package for multivariate analysis. J. Stat. Software 25 (1), 118. doi: 10.18637/jss.v025.i01 Links M. G. Dumonceaux T. J. Hemmingsen S. M. Hill J. E. (2012). The chaperonin-60 universal target is a barcode for bacteria that enables De novo assembly of metagenomic sequence data. PloS One 7 (11), e49755. doi: 10.1371/journal.pone.0049755 Mallick H. Rahnavard A. McIver L. J. Ma S. Zhang Y. Nguyen L. H. . (2021). Multivariable association discovery in population-scale meta-omics studies. PloS Comput. Biol. 17 (11), e1009442. doi: 10.1371/journal.pcbi.1009442 Maqsood R. Rodgers R. Rodriguez C. Handley S. A. Ndao I. M. Tarr P. I. . (2019). Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome. 7 (1), 156. doi: 10.1186/s40168-019-0766-7 Martin M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17 (1), 1012. doi: 10.14806/ej.17.1.200 Mitchell C. M. Mazzoni C. Hogstrom L. Bryant A. Bergerat A. Cher A. . (2020). Delivery mode affects stability of early infant gut microbiota. Cell Rep. Med. 1 (9):100156. doi: 10.1016/j.xcrm.2020.100156 Oksanen J. Blanchet F. G. Friendly M. Kindt R. Legendre P. McGlinn D. . (2020) Vegan: Community ecology package. Available at: https://cran.r-project.org/web/packages/vegan/. Paramel Jayaprakash T. Schellenberg J. J. Hill J. E. Hill J. Jaoko W. (2012). Resolution and characterization of distinct cpn60-based subgroups of gardnerella vaginalis in the vaginal microbiota. PloS One 7 (8), e43009. doi: 10.1371/journal.pone.0043009 R Core Team (2022). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing). Available at: https://www.R-project.org/. Reyman M. van Houten M. A. van Baarle D. Bosch A. A. T. M. Man W. H. Chu M. L. J. N. . (2019). Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat. Commun. 10 (1), 4997. doi: 10.1038/s41467-019-13014-7 Schellenberg J. Links M. G. Hill J. E. Dumonceaux T. J. Peters G. A. Tyler S. . (2009). Pyrosequencing of the chaperonin-60 universal target as a tool for determining microbial community composition. Appl. Environ. Microbiol. 75 (9), 28892898. doi: 10.1128/AEM.01640-08 Shao Y. Forster S. C. Tsaliki E. Vervier K. Strang A. Simpson N. . (2019). Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 574 (7776), 117121. doi: 10.1038/s41586-019-1560-1 Song S. J. Wang J. Martino C. Jiang L. Thompson W. K. Shenhav L. . (2021). Naturalization of the microbiota developmental trajectory of cesarean-born neonates after vaginal seeding. Med. 2 (8), 951964. doi: 10.1016/j.medj.2021.05.003 Soriano-Lerma A. Pérez-Carrasco V. Sánchez-Marañón M. Ortiz-González M. Sánchez-Martín V. Gijón J. . (2020). Influence of 16S rRNA target region on the outcome of microbiome studies in soil and saliva samples. Sci. Rep. 10 (1), 13637. doi: 10.1038/s41598-020-70141-8 Stewart C. J. Ajami N. J. O’Brien J. L. Hutchinson D. S. Smith D. P. Wong M. C. . (2018). Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 562 (7728), 583588. doi: 10.1038/s41586-018-0617-x Stiemsma L. T. Michels K. B. (2018). The role of the microbiome in the developmental origins of health and disease. Pediatrics. 141 (4), e20172437. doi: 10.1542/peds.2017-2437 Thomas S. Izard J. Walsh E. Batich K. Chongsathidkiet P. Clarke G. . (2017). The host microbiome regulates and maintains human health: A primer and perspective for non-microbiologists. Cancer Res. 77 (8), 17831812. doi: 10.1158/0008-5472.CAN-16-2929 Vancuren S. J. Dos Santos S. J. Hill J. E. Team M. M. L. P. (2020). Variant calling for cpn60 barcode sequence-based microbiome profiling. PloS One 15 (7), e0235682. doi: 10.1371/journal.pone.0235682 Vancuren S. J. Hill J. E. (2019). Update on cpnDB: a reference database of chaperonin sequences. Database. 2019, baz033. doi: 10.1093/database/baz033 Vaneechoutte M. Guschin A. Simaey L. V. Gansemans Y. Nieuwerburgh F. V. Cools P. (2019). Emended description of gardnerella vaginalis and description of gardnerella leopoldii sp. nov., gardnerella piotii sp. nov. and gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus gardnerella. Int. J. Syst. Evol. Microbiol. 69 (3), 679687. doi: 10.1099/ijsem.0.003200 van Schalkwyk J. Van Eyk N. (2017). No. 247-antibiotic prophylaxis in obstetric procedures. J. Obstet Gynaecol Can. 39 (9), e293e299. doi: 10.1016/j.jogc.2017.06.007 Videnska P. Smerkova K. Zwinsova B. Popovici V. Micenkova L. Sedlar K. . (2019). Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq illumina platform. Sci. Rep. 9 (1), 13837. doi: 10.1038/s41598-019-49520-3 Wells J. S. Chandler R. Dunn A. Brewster G. (2020). The vaginal microbiome in U.S. black women: A systematic review. J. Womens Health 29 (3), 362375. doi: 10.1089/jwh.2019.7717 Wharton K. Birsner M. (2017). American College of obstetricians and gynecologists. ACOG committee opinion #725: Vaginal seeding. Obstet Gynecol. 130 (5), e274e278. doi: 10.1097/AOG.0000000000002402 Wilson B. C. Butler ÉM Grigg C. P. Derraik J. G. B. Chiavaroli V. Walker N. . (2021). Oral administration of maternal vaginal microbes at birth to restore gut microbiome development in infants born by caesarean section: A pilot randomised placebo-controlled trial. EBioMedicine. 69, 103443. doi: 10.1016/j.ebiom.2021.103443 Yassour M. Jason E. Hogstrom L. J. Arthur T. D. Tripathi S. Siljander H. . (2018). Strain-level analysis of mother-to-Child bacterial transmission during the first few months of life. Cell Host Microbe 24 (1), 146154. doi: 10.1016/j.chom.2018.06.007 Yassour M. Vatanen T. Siljander H. Hämäläinen A. M. Härkönen T. Ryhänen S. J. . (2016). Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8 (343), 343ra81. doi: 10.1126/scitranslmed.aad0917 Yatsunenko T. Rey F. E. Manary M. J. Trehan I. Dominguez-Bello M. G. Contreras M. . (2012). Human gut microbiome viewed across age and geography. Nature. 486 (7402), 222227. doi: 10.1038/nature11053
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.luoteng.com.cn
      hyxqoj.com.cn
      lcdqyq.org.cn
      www.gersnq.com.cn
      www.hhhtzyzs.com.cn
      nbapeilu.com.cn
      www.utuv.com.cn
      shimoo.com.cn
      qrju.com.cn
      si4.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p