Front. Cell. Infect. Microbiol. Frontiers in Cellular and Infection Microbiology Front. Cell. Infect. Microbiol. 2235-2988 Frontiers Media S.A. 10.3389/fcimb.2019.00139 Cellular and Infection Microbiology Review Interplay Between Toxoplasma gondii, Autophagy, and Autophagy Proteins Subauste Carlos S. 1 2 * 1Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States 2Department of Pathology, Case Western Reserve University, Cleveland, OH, United States

Edited by: Jeroen P. J. Saeij, University of California, Davis, United States

Reviewed by: Louis Weiss, Albert Einstein College of Medicine, United States; Eric Denkers, University of New Mexico, United States

*Correspondence: Carlos S. Subauste carlos.subauste@case.edu

This article was submitted to Parasite and Host, a section of the journal Frontiers in Cellular and Infection Microbiology

01 05 2019 2019 9 139 26 02 2019 16 04 2019 Copyright © 2019 Subauste. 2019 Subauste

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Survival of Toxoplasma gondii within host cells depends on its ability of reside in a vacuole that avoids lysosomal degradation and enables parasite replication. The interplay between immune-mediated responses that lead to either autophagy-driven lysosomal degradation or disruption of the vacuole and the strategies used by the parasite to avoid these responses are major determinants of the outcome of infection. This article provides an overview of this interplay with an emphasis on autophagy.

autophagy parasite CD40 IFN-gamma cell signaling National Institutes of Health10.13039/100000002

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Lysosomal degradation is an important mechanism of defense against numerous pathogens. This can be accomplished not only through the endocytic pathway but also through macroautophagy (called herein autophagy) (Levine et al., 2011). Autophagy is a homeostatic mechanism whereby large portions of cytosol or entire organelles are encircled by a double membrane (isolation membrane) leading to the formation of an autophagosome (Klionsky and Emr, 2000; Yoshimori, 2004; Mizushima et al., 2010). This structure fuses with lysosomes resulting in the formation of an autolysosome and cargo degradation (Mizushima et al., 2010).

      Autophagy is dependent on a cascade of autophagy proteins (ATG). However, these proteins can have functions independent of autophagosome formation and lysosomal degradation (Subramani and Malhotra, 2013). This led to the use of the terms canonical and non-canonical autophagy where the latter was frequently used for processes that are non-degradative and/or not dependent on a core component(s) of the autophagy cascade [ATG3, ATG5, ATG7, Unc-51-like kinase 1 (ULK1), Beclin 1, and/or Phosphatidylinositol 3-kinase catalytic subunit type 3, PI3KC3, also known as VPS34] (Galluzzi et al., 2017). To avoid confusion, an expert panel recommended against the use of the terms “canonical”/“non-canonical,” and advised that the term autophagy be used solely for processes dependent on autophagosomes where cytosolic material (either endogenous or exogenous) is directed to a process that culminates with and is strictly dependent on lysosomal degradation (Galluzzi et al., 2017). The processes can be further characterized by stating the autophagy proteins they are dependent on Galluzzi et al. (2017). In this review, we summarize studies on the interplay between T. gondii and host autophagy as well as non-degradative processes controlled by autophagy proteins.

      Invasion of Host Cells by <italic>T. gondii</italic>

      Tachyzoites of T. gondii infect virtually any nucleated cell and survive by residing in a compartment called the parasitophorous vacuole (PV). This vacuole is formed during active invasion of host cells, a process dependent on the parasite actin-myosin motor and sequential secretion of proteins from micronemes and rhoptries (Bradley and Sibley, 2007; Besteiro et al., 2011; Santos and Soldati-Favre, 2011). Once secreted from micronemes, T. gondii micronemal proteins (MICs) are expressed on the parasite surface and function as adhesins that interact with host cell membrane receptors (Carruthers and Tomley, 2008). MICs are expressed as multiprotein complexes that include MIC1/4/6, MIC3/8, MIC2/M2AP, and a complex of the microneme protein TgAMA1 with rhoptry neck proteins (Cerede et al., 2005; Huynh and Carruthers, 2006; Sheiner et al., 2010). MICs contain domains such as type I thrombospondin repeats, apple domains, epidermal growth factor (EGF) repeats, and integrin A domains (Tomley and Soldati, 2001; Anantharaman et al., 2007). The connection between transmembrane MICs and the parasite actin-myosin motor together with binding to host cell receptors enables the parasite to penetrate host cells (Soldati-Favre, 2008; Sibley, 2011). Following the release of MICs, rhoptries secrete a complex of neck proteins (RONs) containing RON2 that associates with the host cell membrane, plus RON4, RON5, and RON8 that are exposed to the host cell cytoplasm (Bradley and Sibley, 2007; Besteiro et al., 2011; Santos and Soldati-Favre, 2011). The complex forms a structure called moving junction that anchors the parasite to the host cell cytoskeleton during invasion (Bradley and Sibley, 2007; Besteiro et al., 2011; Santos and Soldati-Favre, 2011). Tachyzoites penetrate the host cell through the moving junction causing invagination of the host cell membrane. The moving junction also appears to function as a sieve that excludes host type I transmembrane proteins from entering the membrane that encircles the parasite as it penetrates the host cell (Mordue et al., 1999; Besteiro et al., 2011). Once invasion is completed, T. gondii resides within the PV. While host endocytic structures are delivered intact into the vacuolar space, there is no release of endosomal contents into the vacuole (Coppens et al., 2006). The lack of fusion with the endocytic compartment would be explained by the absence of host type I transmembrane proteins in the PV membrane (PVM) (Mordue et al., 1999; Besteiro et al., 2011).

      Autophagy Overview

      Formation of the isolation membrane is dependent on recruitment of ATG proteins (Mizushima et al., 2010). Activation of both ULK1 and the complex that contains Beclin 1 and PI3KC3 drive the recruitment of ATG proteins to the isolation membrane promoting autophagosome formation and maturation (Chan et al., 2009; Itakura and Mizushima, 2010; Mizushima et al., 2010; Russell et al., 2013). ULK1 is the upstream kinase that triggers autophagy (Itakura and Mizushima, 2010). ULK1 is regulated by AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1), kinases that sense nutrient and energy status. In response to falling energy status, AMPK activates ULK1 and autophagy is stimulated (Chang et al., 2009; Egan et al., 2011; Kim et al., 2011; Mack et al., 2012). In contrast, ULK1 is inhibited by mTORC1 under nutrient rich conditions, leading to inhibition of autophagy (Chang et al., 2009). ULK1 undergoes membrane translocation upon activation by AMPK (Chang et al., 2009; Egan et al., 2011; Kim et al., 2011; Mack et al., 2012). Autophagosome biogenesis begins with the formation and activation of a ULK1-containing protein complex on membranes that express ATG9 (Papinski et al., 2014). ULK1 activates and recruits the Beclin 1–PI3KC3 complex to the membrane (Itakura and Mizushima, 2010). PI3KC3 causes production of PI3P at the membrane (Liang et al., 1999) and recruitment of PI3P-binding proteins that would act as scaffold for proteins that mediate membrane remodeling (Nascimbeni et al., 2017). Active Beclin-PI3KC3 triggers recruitment of ATG proteins that in turn function as two ubiquitin-like conjugation systems. In one cascade, ATG7 and ATG10 promote the conjugation of ATG5 to ATG12 (Mizushima et al., 1998). In the other cascade, ATG3 and ATG7 together with the ATG12-ATG5-ATG16L1 complex allow lipidation (phosphatidylethanolamide conjugation) of LC3 (ATG8) (Mizushima et al., 1998). Lipidated LC3 (LC3-II) is recruited to the autophagosome membrane (Kabeya et al., 2000) and allows substrate uptake by binding to several autophagy receptors (Stolz et al., 2014; Wild et al., 2014). Once the cargo is sequestered by the autophagosomes and through the effect of proteins that include Rab7 (Gutierrez et al., 2004), these structures fuse with lysosomes leading to the formation of an autolysosome.

      Beclin 1 is regulated through protein-protein interactions. Beclin 1 binds proteins that promote autophagy (e.g., ATG14L) whereas binding to other proteins (e.g., Bcl-2 family members) inhibits autophagy (Pattingre et al., 2005; Sun et al., 2008; Matsunaga et al., 2009). Under basal conditions Bcl-2 binds to the BH3 domain of Beclin 1 preventing the association of Beclin 1 to PI3KC3 and the initiation of autophagy (Pattingre et al., 2005). Starvation stimulates autophagy in part because it triggers JNK1-dependent phosphorylation of Bcl-2 that releases Beclin 1 from Bcl-2 (Wei et al., 2008).

      Autophagy proteins can be involved in cellular processes activated during intracellular infections that do not represent bona fide autophagy. LC3-associated phagocytosis (LAP) represents an example of such a process. LAP consists in the recruitment of LC3 and some other components of the autophagy pathway to single-membrane phagosomes that contain pathogens or dead cells that have been actively phagocytosed (Sanjuan et al., 2007). While LAP requires proteins that include ATG3, ATG5, ATG7, ATG12, ATG16L, Beclin 1, and PI3KC3, other proteins notably ULK1 are not involved in this process (Martinez et al., 2015). LAP is believed to result in faster fusion with lysosomes and plays a protective role against various pathogens (Sanjuan et al., 2007; Martinez et al., 2015). Autophagy proteins can be involved in additional mechanisms of anti-microbial activity that occur independently of the formation of autophagosomes and are not mediated by lysosomal degradation of the pathogen. In this regard, IFN-γ induces autophagy protein-dependent recruitment of GTPases that disrupt the integrity of the PV membrane (see below).

      Autophagy During <italic>T. gondii</italic> Infection CD40 Stimulates Autophagy and Triggers Autophagic Targeting of <italic>T. gondii</italic>

      Autophagy can be stimulated by innate and adaptive immune mechanisms to degrade various pathogens (Levine et al., 2011). Pattern recognition receptors including TLR and NOD2 as well as cytokines such IFN-γ and type I interferon can stimulate autophagy (Shi and Kehrl, 2010; Gade et al., 2012; Matsuzawa et al., 2012; Chauhan et al., 2015). CD40 is a stimulator of autophagy that confers resistance against cerebral and ocular toxoplasmosis. CD40 is a member of the TNF receptor superfamily that is expressed on antigen presenting cells and various non-hematopoietic cells (Van Kooten and Banchereau, 2000). CD40 ligand (CD154) is expressed primarily on activated CD4+ T cells but is also present in activated platelets and plasma (Van Kooten and Banchereau, 2000). Studies in patients with congenital lack of functional CD154 (X-linked Hyper IgM syndrome) uncovered the central role of the CD40-CD154 pathway in protection against toxoplasmosis (Subauste et al., 1999). While the CD40-CD154 pathway promotes Th1-type cytokine response against T. gondii (Subauste et al., 1999; Reichmann et al., 2000), toxoplasmacidal activity induced by CD40 ligation in infected cells likely contributes to protection against the parasite (Reichmann et al., 2000; Portillo et al., 2010). Using peritoneal cells from T. gondii-infected mice, it has been proposed that CD40 plays a secondary role in parasite elimination in macrophages, although the CD4+ T cell–macrophage ratio (extent of CD40-CD154 interaction in vitro) and whether macrophages infected in vitro had undergone prior CD40-CD154 signaling in vivo were unclear (Zhao et al., 2007). Other studies demonstrated that CD154+ T. gondii-reactive CD4+ T cells induce anti-T. gondii activity in macrophages even if CD40 ligation occurs in cells already infected with T. gondii (Andrade et al., 2006). Importantly, studies in CD154−/− and CD40−/− mice established that this pathway is central for restricting parasite load in the brain and retina, and protecting against cerebral and ocular toxoplasmosis (Reichmann et al., 2000; Portillo et al., 2010), the two main forms of disease in humans.

      Several lines of evidence indicate that CD40 stimulates autophagy and induces killing of T. gondii through autophagic targeting of the parasite, a phenomenon that occurs in hematopoietic and non-hematopoietic cells from both human and mice. CD40 ligation increases conversion of the autophagy protein LC3-I to LC3-II, as well as increases formation of autophagosomes and autolysosomes (autophagy flux). These events are dependent on ULK1, ATG5, ATG7, and Beclin 1 (Andrade et al., 2006; Portillo et al., 2010; Ogolla et al., 2013; Van Grol et al., 2013; Liu et al., 2015). In cells infected with T. gondii, CD40 ligation induces accumulation of mannose 6 phosphate receptor, Rab7, LAMP-1, LAMP-2, CD63, and cathepsin D around the PV as well as co-localization of these vacuoles with the acidotropic dye Lysotracker (Andrade et al., 2006; Portillo et al., 2010; Ogolla et al., 2013; Van Grol et al., 2013). Accumulation of lysosomal markers occurs around vacuoles that contain proteins secreted by parasite dense granules within the vacuolar lumen (Andrade et al., 2006). This indicates that the events triggered by CD40 represent fusion of the PV with lysosomes rather than being a consequence of phagocytosis since secretion of dense granule contents takes place during formation of PV but not during phagocytosis of T. gondii. Moreover, vacuole-lysosomal fusion (VLF) still occurs even if CD40 is engaged 18 h after infection (Andrade et al., 2006). VLF is preceded by accumulation of LC3 around the PV. Autophagy mediates VLF and killing of T. gondii since knockdown of ULK1, Beclin 1, PI3KC3, ATG5, or ATG7, expression of dominant negative Rab7 or pharmacologic inhibition of vacuolar ATPase or PI3K, and importantly incubation with lysosomal enzyme inhibitors ablate killing of T. gondii induced by CD40 (Andrade et al., 2006; Portillo et al., 2010; Van Grol et al., 2013). CD40 triggers VLF via autophagy rather than LAP since ULK1 is required for autophagy while LAP takes place independently of ULK1 (Martinez et al., 2015). In addition, the events triggered by CD40 ligation do not represent phagocytosis of the parasite.

      CD40 stimulates autophagy via four mechanisms (Figure 1). First, CD40 induces CaMKKβ-mediated Threonine-172 AMPK phosphorylation, a marker of AMPK activation (Liu et al., 2016). In turn, AMPK signaling causes Serine-555 ULK1 phosphorylation and ULK1-mediated autophagy (Liu et al., 2016). Second, CD40 induces autocrine secretion of TNF-α that causes JNK1/2-dependent phosphorylation of Bcl-2 at Serine 87 and dissociation of Bcl-2 from Beclin 1 (Subauste et al., 2007; Liu et al., 2016). The latter process is known to allow binding of Beclin 1 to PI3KC3 and initiation of autophagy (Pattingre et al., 2005). Third, CD40 upregulates Beclin 1 protein levels in vitro and in vivo (Portillo et al., 2010). This effect appears to occur through downregulation of p21, a protein that degrades Beclin 1 (Portillo et al., 2010). Consistent with the evidence that the level of Beclin 1 expression is linked to autophagic activity (Liang et al., 1999), CD40-induced Beclin 1 upregulation facilitates autophagic killing of T. gondii triggered by CD40 (Portillo et al., 2010). These three events act in synchrony, likely optimizing the ability of CD40 to stimulate autophagy and induce toxoplasmacidal activity. Finally, CD40 also promotes autophagy by activating PKR (Ogolla et al., 2013), a serine-threonine kinase that stimulates autophagy (Talloczy et al., 2002, 2006). These events are relevant to T. gondii since autophagic targeting and/or killing of the parasite induced by CD40 is dependent on CaMKKβ, AMPK, TNF-α, JNK1/2, Beclin 1 upregulation, p21 downregulation, and PKR (Subauste et al., 2007; Portillo et al., 2010; Ogolla et al., 2013; Liu et al., 2016).

      CD40 activates signaling pathways that stimulate autophagy. CD40 stimulates autophagy via four mechanisms. (1), CD40 induces CaMKKβ-mediated Threonine-172 AMPK phosphorylation that in turn causes Serine-555 ULK1 phosphorylation and ULK1-mediated autophagy. (2), CD40 induces autocrine secretion of TNF-α that causes JNK1/2-dependent phosphorylation of Bcl-2 at Serine 87 and dissociation of Bcl-2 from Beclin 1. (3), CD40 upregulates Beclin 1 protein levels likely through downregulation of p21. (4), CD40 activates PKR and eIF2α. CD40 may activate additional mechanisms that act on ULK1 and Beclin 1. CD40 causes autophagic killing of T. gondii that is dependent on ULK1, Beclin 1, PI3KC3, ATG5, ATG7, and lysosomal enzymes. Modified with permission from Liu et al. (2016).

      Animal studies support the importance of autophagy for control of T. gondii in the brain and eye. Autophagy-deficient BECN1+/− mice, mice with deficiency of the autophagy protein ATG7 targeted to microglia/macrophages (Atg7flox/flox-Lyz-M Cre mice) and PKR−/− mice are susceptible to cerebral and ocular toxoplasmosis (Portillo et al., 2010; Ogolla et al., 2013). This susceptibility is not explained by defects in cellular or humoral immunity against the parasite. Moreover, macrophages/microglia from these mice exhibit impaired killing of T. gondii in response to CD40 but not IFN-γ stimulation (Portillo et al., 2010; Ogolla et al., 2013).

      <italic>T. gondii</italic> Manipulates Host Cell Signaling to Avoid Targeting by Autophagy

      Avoidance of the lysosomal compartment is essential for T. gondii survival. Autophagy is a constitutive process in eukaryotic cells. Moreover, a fraction of host cells is unable to exhibit autophagic targeting and VLF of intracellular tachyzoites despite activation through CD40. These findings suggest that T. gondii uses strategies to avoid targeting by autophagosomes. Indeed, the parasite activates host cell signaling pathways that achieve this purpose.

      Epidermal growth factor receptor (EGFR) is expressed in various cells various cell types (including epithelial cells, endothelial cells, microglia, and certain neurons) and can inhibit autophagy (Sobolewska et al., 2009). EGFR is composed of extracellular (ligand binding), transmembrane, intracellular tyrosine kinase and carboxyl-terminal tail domains (Purba et al., 2017). Ligand binding causes a conformational change in the kinase domain leading to activation of EGFR through autophosphorylation of tyrosine residues in the carboxyl-terminal tail (Purba et al., 2017). These phosphorylated residues recruit signaling molecules downstream of EGFR (Purba et al., 2017). T. gondii induces phosphorylation of the tyrosine residues 1,068, 1,148, and 1,173 of EGFR during infection of human or rodent cells (Muniz-Feliciano et al., 2013). T. gondii-induced EGFR signaling leads to activation of PI3K (Muniz-Feliciano et al., 2013), a molecule that triggers production of phosphatidylinositol 3,4,5 trisphosphate (PIP3). Transfection of host cells with a plasmid encoding GFP-tagged amino-terminal pleckstrin homology (PH) domain of Akt that binds PIP3 revealed PIP3 accumulation around the PV (Muniz-Feliciano et al., 2013). Consistent with the fact that PIP3 production is a major trigger of Akt activation, T. gondii induces Akt activation (Muniz-Feliciano et al., 2013) (Figure 2A). While parasite-induced Akt activation in macrophages is impaired by Pertussis Toxin (PTx) suggesting that Akt signaling can be dependent on G-protein coupled receptors (GPCR) (Kim and Denkers, 2006), genetic and pharmacologic blockade of EGFR in various cell types including macrophages/microglia revealed that EGFR is an important driver of Akt activation triggered by T. gondii (Muniz-Feliciano et al., 2013).

      T. gondii invasion of host cells activates signaling cascades that prevent autophagic targeting of the parasite. (A) During attachment to host cells, T. gondii MIC3 and MIC6 cause EGFR autophosphorylation, leading to PI3K-dependent activation of Akt. Blockade of EGFR, PI3K, or Akt leads to autophagic targeting of the PV and killing of the parasite. (B) During invasion of host cells, the formation of the moving junction, characterized by expression of RON4, is accompanied by activation of FAK. In turn, FAK activates Src causing Src-dependent transactivation of EGFR (Y845 phosphorylation). This unique form of EGFR activation recruits STAT3 signaling that prevents activation of PKR and eIF2α. Blockade of the signaling cascade results in activation of PKR and eIF2α leading to autophagic targeting and killing of the parasite. Inhibition of the MIC3/6EGFRAkt or the FAKSrcpY845 EGFRSTAT3 pathways results in autophagic killing of T. gondii that is dependent on ULK1, Beclin 1, ATG7, and lysosomal enzymes. Modified with permission from Portillo et al. (2017) PLoS Pathog 13, e1006671.

      Inhibition of the EGFAkt pathway results in spontaneous recruitment of LC3 and formation of a double membrane structure around the PVM followed by VLF (Muniz-Feliciano et al., 2013). In both human and mouse cells, ensuing killing of type I and II strains of T. gondii is dependent on ULK1, Beclin 1, ATG7, and lysosomal enzymes (Muniz-Feliciano et al., 2013). These results are likely explained by the fact that Akt is a negative regulator of autophagy via activation of mTORC1 (Menon et al., 2014). Given that Akt activation is linked to inhibition of apoptosis of T. gondii-infected cells (Kim and Denkers, 2006), parasite-induced EGFR-Akt signaling may promote parasite survival by preserving the non-fusogenic nature of the PV and by avoiding death of infected cells subjected to pro-apoptotic signals.

      EGFR can be activated by transmembrane proteins that are shed from the plasma membrane as a consequence of the ADAM (a disintegrin and metalloprotease) family of zinc-dependent metalloproteases (Yarden and Sliwkowski, 2001). This process is stimulated by GPCR (Yarden and Sliwkowski, 2001). However, treatment with GM6001, a broad-spectrum ADAM inhibitor, or with PTx fails to inhibit T. gondii-induced EGFR activation (Muniz-Feliciano et al., 2013). The parasite causes EGFR phosphorylation at tyrosine 1,148 (Muniz-Feliciano et al., 2013), a site that appears to be phosphorylated only by ligand binding to EGFR (Moro et al., 2002). In this regard, MIC3, MIC6, MIC8 have multiple domains with homology to EGF (Meissner et al., 2002). Recombinant MIC3 and MIC6 but not MIC4 or M2AP induce EGFR-Akt signaling in mammalian cells and impair the ability of CD154 to induce LC3 accumulation around the parasite (Muniz-Feliciano et al., 2013). In addition, MIC1 ko (deficient in MIC6), MIC3 ko and especially MIC1/3 ko parasites are defective in induction of EGFR-Akt activation (Muniz-Feliciano et al., 2013). While cells infected with MIC1/3 ko T. gondii do not exhibit spontaneous targeting by LC3+ structures, there is increased recruitment of LC3 and susceptibility to killing after incubation with stimulators of autophagy (CD154, Rapamycin) (Muniz-Feliciano et al., 2013). The likely explanation for these results is that MIC1/3 ko T. gondii have residual ability to induce EGFR-Akt signaling (Muniz-Feliciano et al., 2013). Although MIC8 has EGF-like domains, MIC8 ko parasites show no defect in EGFR activation (Muniz-Feliciano et al., 2013). These findings are likely explained by the fact that MIC8 ko parasites are not defective in host cell attachment and secrete MICs (Kessler et al., 2008). Whether simultaneous deficiency in MIC3, MIC6 and MIC8 ablates EGFR autophosphorylation or whether there is another mechanism that contributes to EGFR autophosphorylation remains to be determined. Taken together, in addition to being key for invasion of host cells, these studies indicate that MIC3 and MIC6 promote EGFR-Akt signaling to avoid lysosomal degradation of the parasite (Figure 2A).

      Another mechanism operative in both human and murine cells that enables type I, II, and atypical strains of T. gondii to avoid targeting by autophagosomes is dependent on activation of Focal Adhesion Kinase (FAK), a cytoplasmic molecule that links extracellular signals to intracellular signaling cascades. T. gondii induces FAK activation at the level of the moving junction, an effect that is largely mediated by β integrins, presumably in the form of mechano-transduction-induced integrin clustering at the site of penetration of host cells (Portillo et al., 2017) (Figure 2B). Src becomes activated as a consequence of T. gondii-induced FAK activation (Portillo et al., 2017). Src can bind EGFR and transactivate this receptor even in the absence of ligand binding (Biscardi et al., 1999). EGFR transactivation is characterized by phosphorylation of a unique tyrosine 845 in the kinase domain of EGFR that recruits alternate signaling cascades downstream of EGFR including STAT3. Indeed, T. gondii triggers Src dependent phosphorylation of tyrosine 845 of EGFR followed by activation of STAT3 (Portillo et al., 2017) (Figure 2B), a negative regulator of autophagy (Van Grol et al., 2010; Shen et al., 2012). In the case of T. gondii infection, STAT3 activation prevents autophagic targeting of the parasite by impairing activation of the pro-autophagy protein PKR and its downstream signaling molecule eIF2α (Portillo et al., 2017). Genetic or pharmacologic blockade of any component of the FAKSrcp845Y EGFRSTAT3 pathway causes recruitment of LC3 around the parasite, VLF and parasite killing dependent on ULK1, Beclin 1, and lysosomal enzymes (Portillo et al., 2017). Thus, T. gondii activates an Akt- and a STAT3-dependent signaling pathway in both human and mouse cells to avoid autophagic targeting, and these pathways appear to function independently (Portillo et al., 2017) (Figure 2).

      Animal studies have recently demonstrated the in vivo relevance of T. gondii-induced manipulation of host cell signaling in the pathogenesis of cerebral and ocular toxoplasmosis. The CNS is invaded via the blood stream when tachyzoites present in circulating infected leukocytes or extracellular tachyzoites reach the brain (Courret et al., 2006; Konradt et al., 2016). CNS invasion is preceded by infection of endothelial cells (Konradt et al., 2016). Expression of a dominant negative EGFR in endothelial cells ablates T. gondii-induced autophosphorylation and transactivation of EGFR (Lopez Corcino et al., 2019). Transgenic mice whose endothelial cells express DN EGFR exhibit diminished parasite load and histopathology in the brain and retina after T. gondii infection (Lopez Corcino et al., 2019). Mice with DN EGFR have reduced parasite load in these organs after i.v. administration of infected leukocytes or extracellular tachyzoites (Lopez Corcino et al., 2019). This protective effect is not explained by enhanced immunity or reduced leukocyte recruitment into the CNS. Rather, the effect of DN EGFR is to reduce the foci of infection in neural endothelial cells (Lopez Corcino et al., 2019). DN EGFR in these cells results in the spontaneous recruitment of LC3 around T. gondii, VLF and parasite killing dependent on ULK1 and lysosomal enzymes (Lopez Corcino et al., 2019). Moreover, in vivo administration of autophagy inhibitor 3-methyl adenine prevents DN EGFR mice from exhibiting reduced CNS invasion (Lopez Corcino et al., 2019). Altogether, EGFR is a novel regulator of T. gondii invasion of neural tissue, enhancing invasion likely by promoting survival of the parasite within endothelial cells through avoidance of autophagic targeting.

      Although T. gondii activates signaling molecules that can inhibit autophagy, T. gondii does not prevent autophagosome formation in infected cells (Wang et al., 2009). In fact, T. gondii increases LC3-II levels and autophagosome formation in host cells at 24 h post-infection (Wang et al., 2009). These studies together with the demonstration that T. gondii induces lipophagy in host cells to obtain fatty acids (Pernas et al., 2018) would support that the parasite co-opts host cell autophagy to gain access to nutrients for its growth (Wang et al., 2009; Pernas et al., 2018). A model has been proposed whereby T. gondii utilizes the autophagy machinery of permissive (non-activated) host cells for its own benefit, whereas host cell autophagy would lead to parasite killing only in immune-activated host cells (Latre De Late et al., 2017). However, the signaling studies described above revealed an additional layer of complexity. They begin to indicate that CD40 and T. gondii have opposing effects on signaling molecules that regulate autophagy (i.e., PKR). The balance between these opposing effects may determine whether autophagic targeting of the parasite takes place. Host cell autophagy would cause parasite killing not only in CD40-activated host cells but also in resting cells if the effects of T. gondii on EGFRAkt or FAK/Srcp-Y845 EGFRSTAT3 signaling are blocked. This model has therapeutic implications since, for example, addition of EGFR tyrosine kinase inhibitors to resting cells restricts T. gondii growth (Muniz-Feliciano et al., 2013; Yang et al., 2014). Host cell autophagy would be beneficial to the parasite in resting host cells as long as the parasite is able to activate negative regulators that prevent autophagosomes from targeting and killing the parasite. In these cells, activation of the regulatory signaling cascades would not appear to inhibit global autophagy but rather would impair targeting of the parasite by autophagosomes.

      Autophagy-Independent Effects of Autophagy Proteins During <italic>T. gondii</italic> Infection IFN-γ Restricts <italic>T. gondii</italic> Through Autophagy-Independent Effects of Autophagy Proteins

      IFN-γ is a major activator of effector responses against T. gondii in mammalian cells. IFN-γ causes vesiculation and rupture of the PVM in mouse cells leading to parasite release into the cytoplasm and parasite death (Martens et al., 2005; Zhao et al., 2008, 2009). While autophagosome-like structures can be noted around the parasites (Ling et al., 2006), the function of these structures is not to kill the parasite but likely to clear parasite/PVM fragments (Zhao et al., 2008; Choi et al., 2014; Ohshima et al., 2014). Indeed, parasite killing in IFN-γ-activated mouse cells is not mediated by lysosomal activity since expression of DN Rab7 that would inhibit lysosomal fusion and/or autolysosome maturation (Andrade et al., 2006) or incubation with lysosomal protease inhibitors fail to impair the anti-T. gondii activity induced by IFN-γ (Andrade et al., 2006; Van Grol et al., 2013; Choi et al., 2014). Thus, bona fide autophagy does not mediate the anti-T. gondii effects of IFN-γ.

      Interestingly, while autophagosomes are not involved in killing of susceptible strains of T. gondii within IFN-γ-activated cells (Zhao et al., 2008), selected autophagy proteins are required for parasite death in mouse cells. These autophagy proteins function by promoting recruitment of Immunity Regulated GTPases (IRGs) and Guanylate Binding Proteins (GBPs) to the PVM (Figure 3A). IFN-γ induces recruitment and loading of effector GKS subfamily of IRGs (Irga6, Irgb6, Irgb10, Irgd) onto the PVM causing its disruption (Martens et al., 2005; Ling et al., 2006; Khaminets et al., 2010). IRGs promote ubiquitin deposition on the PVM followed by p62-dependent recruitment of GBPs (Haldar et al., 2015) (Figure 3A). Disruption of the PVM enables GBPs to bind and kill the parasite (Kravets et al., 2016). ATG5 is required for recruitment of GKS IRGs (Irga6, Irgb6, Irgd) and mGBP1 to the PVM in IFN-γ-activated mouse macrophages and fibroblasts (Zhao et al., 2008; Khaminets et al., 2010; Selleck et al., 2013). Similarly, ATG7 and ATG16L1 are necessary for Irgb6 and mGBP1-5 recruitment (Choi et al., 2014; Ohshima et al., 2014) while ATG3 is required for recruitment of Irgb6, Irb10 and mGBP1-5 in fibroblasts (Choi et al., 2014; Haldar et al., 2014). Consistent with the fact that ATG3, ATG7, and the ATG12-ATG5-ATG16L1 complex mediate LC3 conjugation, LC3 is recruited to the PVM in IFN-γ-activated mouse macrophages and fibroblasts (Choi et al., 2014; Park et al., 2016). The LC3 homologs gamma-aminobutyric acid-A-receptor-associated proteins (GABARAPs) are also recruited to the PVM in a conjugation-dependent manner (Park et al., 2016). These proteins target IRGs to the PVM in mouse cells (Park et al., 2016). In another study, GABARAPL2 (Gate-16) but not LC3 was required for recruitment of Irga6 and GBP1-5 to the vacuole of IFN-γ-treated mouse fibroblasts (Sasai et al., 2017).

      IFN-γ-induced recruitment of IRG and GBP to the PVM in mouse cells leads to killing of T. gondii, an effect that is prevented by virulent strains of the parasite. (A) IFN-γ induces expression of IRGs and GBPs in mouse cells. In cells infected with type II or III strains of T. gondii, IFN-γ causes recruitment of GKS IRGs to the PVM, an effect that is mediated by ATG3, ATG7, ATG12-ATG5-ATG16L, and LC3. IRGs drive ubiquitin deposition and p62-mediated recruitment of GBP to the PVM. IRGs and GBP disrupt PVM enabling GBPs to bind the surface membrane of the parasite leading to parasite death. (B) In mouse cells infected with type I T. gondii, ROP5/ROP18/GRA7 form a complex with IRG causing threonine phosphorylation. As a result, IRGs remain in an inactive GDP-bound conformation that prevents their oligomerization and loading into the PVM. ROP17 also phosphorylates threonine residues of IRG (see text). The models shown represent events that take place in mouse cells. Mechanisms operative in human cells are described in the text.

      As stated above, ATG proteins do not function through bona fide autophagy to restrict T. gondii in IFN-γ activated cells. Indeed, lysosomal degradation does not mediate the effects of these proteins (Choi et al., 2014). Moreover, ULK1 and ATG14L are not required in order for IFN-γ to control T. gondii (Choi et al., 2014). Similarly, ATG9, ATG14L and FIP200 are not required for recruitment of LC3, Irg6a and GBP to the vacuole (Choi et al., 2014; Ohshima et al., 2014; Sasai et al., 2017). While the mechanism of action of ATG proteins remains to be fully elucidated, these proteins may activate IRGs (Haldar et al., 2014), LC3 may target IRGs to the membrane (Park et al., 2016), and Gate-16 associates with the small GTPase ADP-ribosylation factor 1 (Arf1) to mediate IRG recruitment (Sasai et al., 2017).

      IRGs represent the major mechanism by which IFN-γ protects mice during the acute phase of T. gondii infection (Martens et al., 2005). Consequently, ATG proteins not only mediate the anti-T. gondii activity in mouse cells activated by IFN-γ but they are also required for in vivo protection. Mice with deficiency in ATG5, ATG7, or ATG16L targeted to phagocytes exhibit marked susceptibility to acute infection with T. gondii (Zhao et al., 2008; Choi et al., 2014). In contrast, ATG14L deficiency does not increase susceptibility to acute infection (Choi et al., 2014). In addition, Gate-16−/− mice succumb to acute infection with T. gondii in a manner that mimics IFN-γ−/− mice (Sasai et al., 2017).

      The effector mechanisms activated by IFN-γ to restrict T. gondii growth in human cells are less well-characterized and differ from those in mouse cells. Mechanisms in human cells appear to be cell-type specific and are reported to include induction of indoleamine 2,3-dioxygenase that deprives the parasite from tryptophan (Pfefferkorn, 1984) and host cell death that results in early parasite egress without replication (Niedelman et al., 2013). In contrast to mice, humans express only 2 IRGs that cannot be induced by IFN-γ explaining why IRGs do not mediate the effects of IFN-γ in human cells (Bekpen et al., 2005). Human cells express GBPs (Ohshima et al., 2014). Moreover, hGBP1-5 are recruited to the parasite in an ATG16L-dependent manner in IFN-γ-activated human HAP1 cells (Ohshima et al., 2014). However, GBPs are not required for restriction of T. gondii (Ohshima et al., 2014). Studies in human epithelial (HeLa) cells identified a mechanism for control of type II and type III T. gondii induced by IFN-γ that is dependent on ubiquitination and some ATG proteins (Selleck et al., 2015). IFN-γ induces ubiquitination of the PV and recruitment of the ubiquitin adaptor proteins p62 and Nuclear Domain 10 Protein 52 (NDP52), as well as LC3 (Selleck et al., 2015). These vacuoles become surrounded by multiple layers of host membrane that would restrict parasite growth (Selleck et al., 2015). While this process is dependent on ATG16L and ATG7, it occurs independently of Beclin 1 and does not cause VLF, indicating that it does not represent autophagy (Selleck et al., 2015).

      IFN-γ was reported to restrict T. gondii growth within human endothelial cells through a mechanism that remained to be identified (Woodman et al., 1991). A recent study revealed that vacuoles containing type II T. gondii within human endothelial cells are targeted by K63-linked ubiquitin in response to IFN-γ (Clough et al., 2016). This is followed by recruitment of p62 and NDP52, acidification of the vacuole and parasite death. This process does not represent autophagy since it is not accompanied by recruitment of ATG16L, GABARAP, and LC3 (Clough et al., 2016). Moreover, in contrast to IFN-γ-activated HeLa cells, the ability of IFN-γ to restrict parasite growth in human endothelial cells is not dependent on ATG16L (Clough et al., 2016). Taken together, there are two novel cell-type specific mechanisms by which IFN-γ restricts the parasite growth in human non-hematopoietic cells. These mechanisms involve ubiquitination of the vacuole followed by either the formation of a multilayer structure around the vacuole or vacuole acidification.

      <italic>T. gondii</italic> Impairs Recruitment of IRGs to the PVM

      The ability of IRGs to protect mice against T. gondii depends on the parasite strain. While virulent type I T. gondii prevents recruitment of IRGs to the PVM and avoids eradication, low virulence type II strains and avirulent type III strains of T. gondii cannot avoid IRG recruitment and are thus eradicated (Zhao et al., 2009; Khaminets et al., 2010). Evasion of IRG recruitment is mediated by parasite proteins released within host cells during invasion. The rhoptry protein ROP18 is a polymorphic protein kinase and a major determinant of parasite virulence in mice (Saeij et al., 2006; Taylor et al., 2006). Type I T. gondii secretes a catalytically active form of ROP18 that phosphorylates IRGs at two threonine residues in the nucleotide-binding domain (Fentress et al., 2010; Steinfeldt et al., 2010) (Figure 3B). As a result, the GTPase function of IRGs is inhibited and their oligomerization and loading into the PVM are impaired (Fentress et al., 2010; Steinfeldt et al., 2010). The ability of ROP18 to phosphorylate IRGs is dependent on the presence of virulent alleles of ROP5. ROP5 are a group of catalytically inactive kinases (pseudokinases) that control parasite virulence in mice (Behnke et al., 2011; Reese et al., 2011). ROP5 proteins bind a conserved surface of IRG and promote that IRG remain in an inactive GDP-bound conformation (Fleckenstein et al., 2012; Reese et al., 2014). As a result, GTP-dependent activation of IRG is prevented, and threonines in the nucleotide-binding domain become exposed, enabling their phosphorylation by ROP18 and permanent inactivation of IRG (Fleckenstein et al., 2012; Reese et al., 2014). Thus, ROP5 appears to act as an allosteric regulator of ROP18 (Reese et al., 2014) and is required for the catalytic activity of ROP18 (Behnke et al., 2012). Indeed, virulent forms of both ROP5 and ROP18 are required to prevent IRG recruitment to the PVM. ROP18 and ROP5 largely explain the differences in virulence in mice among type I, II, and III strains (Saeij et al., 2006; Taylor et al., 2006). Despite encoding ROP18 that is likely catalytically active, type II strains cannot prevent IRG recruitment because they carry alleles of ROP5 that do not assist IRG phosphorylation by ROP18. In addition, type III strains carry a high-virulence allele of ROP5 but are avirulent because of their minimal expression of ROP18. The allelic combination of ROP18 and ROP5 genes also determines the virulence of atypical strains of T. gondii (Niedelman et al., 2012).

      In addition to ROP18 and ROP5, ROP17 also contributes to T. gondii virulence in mice (Etheridge et al., 2014). ROP17 associates with ROP5 and phosphorylates threonine residues of IRG (Etheridge et al., 2014). However, in contrast to ROP18, the in vitro activity of ROP17 does not require ROP5 (Etheridge et al., 2014). Finally, the dense granule protein GRA7 is another component of the ROP18-ROP5 complex and modulates IRG recruitment to the PVM (Hermanns et al., 2016) (Figure 3B). GRA7 appears to associate with ROP5 and functions by allowing efficient ROP18 kinase activity (Hermanns et al., 2016).

      In summary, important advances have been achieved in our understanding of how autophagy proteins and autophagy attack T. gondii-containing vacuoles within host cells. Given that maintaining the integrity of this niche is essential to parasite survival, it is not surprising that T. gondii utilizes various strategies to counteract the effects of autophagy proteins and autophagy. Pharmacologic approaches to enhance autophagy for therapeutic purposes may be complicated by the homeostatic role of autophagy in various cellular processes, the complexity of autophagy cascades, and the specificity of pharmacologic agents. Strategies to prevent T. gondii from blocking autophagic targeting may represent a more feasible avenue to develop novel ancillary approaches to improve the treatment of toxoplasmosis.

      Author Contributions

      The author confirms being the sole contributor of this work and has approved it for publication.

      Conflict of Interest Statement

      The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The author thanks all the members of the Subauste lab for their feedback on this manuscript.

      References Anantharaman V. Iyer L. M. Balaji S. Aravind L. (2007). Adhesion molecules and other secreted host-interaction determinants in Apicomplexa: insights from comparative geneomics. Int. Rev. Cytol. 262, 174. 10.1016/S0074-7696(07)62001-417631186 Andrade R. M. Wessendarp M. Gubbels M. J. Striepen B. Subauste C. S. (2006). CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J. Clin. Invest. 116, 23662377. 10.1172/JCI2879616955139 Behnke M. S. Fentress S. J. Mashayekhi M. Li L. X. Taylor G. A. Sibley L. D. (2012). The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. PLoS Pathog. 8:e1002992. 10.1371/journal.ppat.100299223144612 Behnke M. S. Khan A. Wootton J. C. Dubey J. P. Tang K. Sibley L. D. (2011). Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proc. Natl. Acad. Sci. U.S.A. 108, 96319636. 10.1073/pnas.101533810821586633 Bekpen C. Hunn J. P. Rohde C. Parvanova I. Guethlein L. Dunn D. M. . (2005). The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol. 6:R92. 10.1186/gb-2005-6-11-r9216277747 Besteiro S. Dubremetz J. F. Lebrun M. (2011). The moving junction of apicomplexan parasites: a key structure for invasion. Cell. Microbiol. 13, 797805. 10.1111/j.1462-5822.2011.01597.x21535344 Biscardi J. S. Maa M. C. Tice D. A. Cox M. E. Leu T. H. Parsons J. T. (1999). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J. Biol. Chem. 274, 83358343. 10.1074/jbc.274.12.833510075741 Bradley P. J. Sibley L. D. (2007). Rhoptries: an arsenal of secreted virulence factors. Curr. Opin. Microbiol. 10, 582587. 10.1016/j.mib.2007.09.01317997128 Carruthers V. B. Tomley F. M. (2008). Receptor-ligand interaction and invasion: microneme proteins in apicomplexans. Subcell. Biochem. 47, 3345. 10.1007/978-0-387-78267-6_2 Cerede O. Dubremetz J. F. Soete M. Deslee D. Vial H. Bout D. . (2005). Synergistic role of micronemal proteins in Toxoplasma gondii virulence. J. Exp. Med. 201, 453463. 10.1084/jem.2004167215684324 Chan E. Y. Longatti A. Mcknight N. C. Tooze S. A. (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 29, 157171. 10.1128/MCB.01082-0818936157 Chang Y. Y. Juhasz G. Goraksha-Hicks P. Arsham A. M. Mallin D. R. Muller L. K. . (2009). Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem. Soc. Trans. 37, 232236. 10.1042/BST037023219143638 Chauhan S. Mandell M. A. Deretic V. (2015). IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol. Cell 58, 507521. 10.1016/j.molcel.2015.03.02025891078 Choi J. Park S. Biering S. B. Selleck E. Liu C. Y. Zhang X. . (2014). The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 40, 924935. 10.1016/j.immuni.2014.05.00624931121 Clough B. Wright J. D. Pereira P. M. Hirst E. M. Johnston A. C. Henriques R. . (2016). K63-Linked ubiquitination targets Toxoplasma gondii for endo-lysosomal destruction in IFN-gamma-stimulated human cells. PLoS Pathog. 12:e1006027. 10.1371/journal.ppat.1006027 Coppens I. Dunn J. D. Romano J. D. Pypaert M. Zhang H. Boothroyd J. C. . (2006). Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125, 261274. 10.1016/j.cell.2006.01.05616630815 Courret N. Darche S. Sonigo P. Milon G. Buzoni-Gatel D. Tardieux I. (2006). CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. Blood 107, 309316. 10.1182/blood-2005-02-066616051744 Egan D. F. Shackelford D. B. Mihaylova M. M. Gelino S. Kohnz R. A. Mair W. . (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456461. 10.1126/science.119637121205641 Etheridge R. D. Alaganan A. Tang K. Lou H. J. Turk B. E. Sibley L. D. (2014). The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe 15, 537550. 10.1016/j.chom.2014.04.00224832449 Fentress S. J. Behnke M. S. Dunay I. R. Mashayekhi M. Rommereim L. M. Fox B. A. . (2010). Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8, 484495. 10.1016/j.chom.2010.11.00521147463 Fleckenstein M. C. Reese M. L. Konen-Waisman S. Boothroyd J. C. Howard J. C. Steinfeldt T. (2012). A Toxoplasma gondii pseudokinase inhibits host IRG resistance proteins. PLoS Biol. 10:e1001358. 10.1371/journal.pbio.100135822802726 Gade P. Ramachandran G. Maachani U. B. Rizzo M. A. Okada T. Prywes R. . (2012). An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc. Natl. Acad. Sci. U.S.A. 109, 1031610321. 10.1073/pnas.111927310922699507 Galluzzi L. Baehrecke E. H. Ballabio A. Boya P. Bravo-San Pedro J. M. Cecconi F. . (2017). Molecular definitions of autophagy and related processes. EMBO J. 36, 18111836. 10.15252/embj.20179669728596378 Gutierrez M. G. Munafo D. B. Beron W. Colombo M. C. (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117, 26872697. 10.1242/jcs.0111415138286 Haldar A. K. Foltz C. Finethy R. Piro A. S. Feeley E. M. Pilla-Moffett D. M. . (2015). Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc. Natl. Acad. Sci. U.S.A. 112, E5628E5637. 10.1073/pnas.151596611226417105 Haldar A. K. Piro A. S. Pilla D. M. Yamamoto M. Coers J. (2014). The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to Chlamydia- and Toxoplasma-containing vacuoles and host resistance. PLoS ONE 9:e86684. 10.1371/journal.pone.008668424466199 Hermanns T. Muller U. B. Konen-Waisman S. Howard J. C. Steinfeldt T. (2016). The Toxoplasma gondii rhoptry protein ROP18 is an Irga6-specific kinase and regulated by the dense granule protein GRA7. Cell. Microbiol. 18, 244259. 10.1111/cmi.1249926247512 Huynh M.-H. Carruthers V. B. (2006). Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS Pathog. 2:e84. 10.1371/journal.ppat.002008416933991 Itakura E. Mizushima N. (2010). Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764776. 10.4161/auto.6.6.1270920639694 Kabeya Y. Mizushima N. Ueno T. Yamamoto A. Kirisako T. Noda T. . (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 57205728. 10.1093/emboj/19.21.572011060023 Kessler H. Hern-Gotz A. Hegge S. Rauch M. Soldati-Favre D. Frischknecht F. . (2008). Micronem protein 8 - a new essential invasion factor in Toxoplasma gondii. J. Cell Sci. 121, 947956. 10.1242/jcs.02235018319299 Khaminets A. Hunn J. P. Konen-Waisman S. Zhao Y. O. Preukschat D. Coers J. . (2010). Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cell. Microbiol. 12, 939961. 10.1111/j.1462-5822.2010.01443.x20109161 Kim J. Kundu M. Viollet B. Guan K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132141. 10.1038/ncb215221258367 Kim L. Denkers E. Y. (2006). Toxoplasma gondii triggers Gi-dependent PI3-kinase signaling required for inhibition of host cell apoptosis. J. Cell Sci. 119, 21192126. 10.1242/jcs.02934 Klionsky D. J. Emr S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 17171721. 10.1126/science.290.5497.171711099404 Konradt C. Ueno N. Christian D. A. Delong J. H. Pritchard G. H. Herz J. . (2016). Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nat. Microbiol. 1:16001. 10.1038/nmicrobiol.2016.127572166 Kravets E. Degrandi D. Ma Q. Peulen T. O. Klumpers V. Felekyan S. . (2016). Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes. Elife 5:e11479. 10.7554/eLife.1147926814575 Latre De Late P. Pineda M. Harnett M. Harnett W. Besteiro S. Langsley G. (2017). Apicomplexan autophagy and modulation of autophagy in parasite-infected host cells. Biomed. J. 40, 2330. 10.1016/j.bj.2017.01.00128411879 Levine B. Mizushima N. Virgin H. W. (2011). Autophagy in immunity and inflammation. Nature 469, 323335. 10.1038/nature0978221248839 Liang X. H. Jackson S. Seaman M. Brown K. D. Kempkes B. Hibshoosh H. . (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672676. 10.1038/4525710604474 Ling Y. M. Shaw M. H. Ayala C. Coppens I. Taylor G. A. Ferguson D. J. P. . (2006). Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J. Exp. Med. 203, 20632071. 10.1084/jem.2006131816940170 Liu E. Lopez Corcino Y. Portillo J. A. C. Miao Y. Subauste C.S. (2016). Identification of signaling pathways by which CD40 stimulates autophagy and anti-microbial activity against Toxoplasma gondii in macrophages. Infect. Immun. 84, 26162626. 10.1128/IAI.00101-16 Liu E. Van Grol J. Subauste C. S. (2015). Atg5 but not Atg7 in dendritic cells enhance IL-2 and IFN-γ production by Toxoplasma gondii-reactive CD4+ T cells. Microbes Infect. 17, 275284. 10.1016/j.micinf.2014.12.008 Lopez Corcino Y. Portillo J.-A. C. Subauste C. S. (2019). Epidermal growth factor receptor promotes cerebral and retinal invasion by Toxoplasma gondii. Sci. Rep. 9:669. 10.1038/s41598-018-36724-2 Mack H. I. Zheng B. Asara J. M. Thomas S. M. (2012). AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8, 11971214. 10.4161/auto.2058622932492 Martens S. Parvanova I. Zerrahn J. Griffiths G. Schell G. Reichmann G. . (2005). Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog. 1:e24. 10.1371/journal.ppat.001002416304607 Martinez J. Malireddi R. K. Lu Q. Cunha L. D. Pelletier S. Gingras S. . (2015). Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893906. 10.1038/ncb319226098576 Matsunaga K. Saitoh T. Tabata K. Omori H. Satoh T. Kurotori N. . (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385396. 10.1038/ncb184619270696 Matsuzawa T. Kim B. H. Shenoy A. R. Kamitani S. Miyake M. Macmicking J. D. (2012). IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol. 189, 813818. 10.4049/jimmunol.110204122675202 Meissner M. Reiss M. Viebig N. Carruthers V. B. Toursel C. Tomavo S. . (2002). A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J. Cell Sci. 115, 563574. 11861763 Menon S. Dibble C. C. Talbott G. Hoxhaj G. Valvezan A. J. Takahashi H. . (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771785. 10.1016/j.cell.2013.11.04924529379 Mizushima N. Noda T. Yoshimori T. Tanaka Y. Ishii T. George M. D. . (1998). A protein conjugation system essential for autophagy. Nature 395, 395398. 10.1038/265069759731 Mizushima N. Yoshimori T. Ohsumi Y. (2010). The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107132. 10.1146/annurev-cellbio-092910-15400521801009 Mordue D. G. Desai N. Dustin M. Sibley L. D. (1999). Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J. Exp. Med. 190, 17831792. 10.1084/jem.190.12.178310601353 Moro L. Dolce L. Cabodi S. Bergatto E. Boeri Erba E. Smeriglio M. . (2002). Integrin-induces epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 277, 94059414. 10.1074/jbc.M10910120011756413 Muniz-Feliciano L. Van Grol J. Portillo J.-A. C. Liew L. Liu B. Carlin C. R. . (2013). Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog. 9:e1003809. 10.1371/journal.ppat.100380924367261 Nascimbeni A. C. Codogno P. Morel E. (2017). Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS J. 284, 12671278. 10.1111/febs.1398727973739 Niedelman W. Gold D. A. Rosowski E. E. Sprokholt J. K. Lim D. Farid Arenas A. . (2012). The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, IFN-gamma response. PLoS Pathog. 8:e1002784. 10.1371/journal.ppat.100278422761577 Niedelman W. Sprokholt J. K. Clough B. Frickel E. M. Saeij J. P. (2013). Cell death of gamma interferon-stimulated human fibroblasts upon Toxoplasma gondii infection induces early parasite egress and limits parasite replication. Infect. Immun. 81, 43414349. 10.1128/IAI.00416-1324042117 Ogolla P. Portillo J.-A. C. White C. L. Patel K. Lamb B. Sen G. C. . (2013). The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog. 9:e100557. 10.1371/journal.ppat.100355723990781 Ohshima J. Lee Y. Sasai M. Saitoh T. Su Ma J. Kamiyama N. . (2014). Role of mouse and human autophagy proteins in IFN-gamma-induced cell-autonomous responses against Toxoplasma gondii. J. Immunol. 192, 33283335. 10.4049/jimmunol.130282224563254 Papinski D. Schuschnig M. Reiter W. Wilhelm L. Barnes C. A. Maiolica A. . (2014). Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53, 471483. 10.1016/j.molcel.2013.12.01124440502 Park S. Choi J. Biering S. B. Dominici E. Williams L. E. Hwang S. (2016). Targeting by AutophaGy proteins (TAG): targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy. Autophagy 12, 11531167. 10.1080/15548627.2016.117844727172324 Pattingre S. Tassa A. Qu X. Garuti R. Liang X. H. Mizushima N. . (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927939. 10.1016/j.cell.2005.07.00216179260 Pernas L. Bean C. Boothroyd J. C. Scorrano L. (2018). Mitochondria restrict growth of the intracellular parasite Toxoplasma gondii by limiting its uptake of fatty acids. Cell Metab. 27, 886897 e884. 10.1016/j.cmet.2018.02.01829617646 Pfefferkorn E. R. (1984). Interferon-γ blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cell to degrade tryptophan. Proc. Natl. Acad. Sci. U.S.A 81, 908912. 10.1073/pnas.81.3.908 Portillo J.-A. C. Okenka G. Reed E. Subauste A. Van Grol J. Gentil K. . (2010). The CD40-autophagy pathway is needed for host protection despite IFN-γ-dependent immunity and CD40 induces autophagy via control of p21 levels. PLoS ONE 5:e14472. 10.1371/journal.pone.001447221217818 Portillo J. C. Muniz-Feliciano L. Lopez Corcino Y. Lee S. J. Van Grol J. Parsons S. J. . (2017). Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy. PLoS Pathog. 13:e1006671. 10.1371/journal.ppat.100667129036202 Purba E. R. Saita E. I. Maruyama I. N. (2017). Activation of the EGF receptor by ligand binding and oncogenic mutations: the “Rotation Model”. Cells 6:E13. 10.3390/cells602001328574446 Reese M. L. Shah N. Boothroyd J. C. (2014). The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases. J. Biol. Chem. 289, 2784927858. 10.1074/jbc.M114.56705725118287 Reese M. L. Zeiner G. M. Saeij J. P. Boothroyd J. C. Boyle J. P. (2011). Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Proc. Natl. Acad. Sci. U.S.A. 108, 96259630. 10.1073/pnas.101598010821436047 Reichmann G. Walker W. Villegas E. N. Craig L. Cai G. Alexander J. . (2000). The CD40/CD40 ligand interaction is required for resistance to toxoplasmic encephalitis. Infect. Immun. 68, 13121318. 10.1128/IAI.68.3.1312-1318.200010678943 Russell R. C. Tian Y. Yuan H. Park H. W. Chang Y. Y. Kim J. . (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741750. 10.1038/ncb275723685627 Saeij J. P. Boyle J. P. Coller S. Taylor S. Sibley L. D. Brooke-Powell E. T. . (2006). Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314, 17801783. 10.1126/science.113369017170306 Sanjuan M. A. Dillo C. P. Tait S. W. G. Moshiach S. Dorsey F. Connell S. . (2007). Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 12531257. 10.1038/nature0642118097414 Santos J. M. Soldati-Favre D. (2011). Invasion factors are coupled to key signalling events leading to the establishment of infection in apicomplexan parasites. Cell. Microbiol. 13, 787796. 10.1111/j.1462-5822.2011.01585.x21338465 Sasai M. Sakaguchi N. Ma J. S. Nakamura S. Kawabata T. Bando H. . (2017). Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nat. Immunol. 18, 899910. 10.1038/ni.376728604719 Selleck E. M. Fentress S. J. Beatty W. L. Degrnadi D. Pfeffer K. Virgin H. W. . (2013). Guanylate-binding protein 1 (Gbp1) contributes to cell-autonomous immunity against Toxoplasma gondii. PLoS Pathog. 9:e1003320. 10.1371/journal.ppat.100332023633952 Selleck E. M. Orchard R. C. Lassen K. G. Beatty W. L. Xavier R. J. Levine B. . (2015). A Noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-gamma-activated human cells. MBio 6, e01157e01115. 10.1128/mBio.01157-1526350966 Sheiner L. Santos J. M. Klages N. Parussini F. Jemmely N. Friedrich N. . (2010). Toxoplasma gondii transmembrane microneme proteins and their modular design. Mol. Microbiol. 77, 912929. 10.1111/j.1365-2958.2010.07255.x20545864 Shen S. Niso-Santano M. Adjemian S. Takehara T. Malik S. A. Minoux H. . (2012). Cytoplasmic STAT3 represses autophagy by inhibiting PKR activity. Mol. Cell 48, 667680. 10.1016/j.molcel.2012.09.01323084476 Shi C.-S. Kehrl J. H. (2010). TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3:ra42. 10.1126/scisignal.200075120501938 Sibley L. D. (2011). Invasion and intracellular survival by protozoan parasites. Immunol. Rev. 240, 7291. 10.1111/j.1600-065X.2010.00990.x21349087 Sobolewska A. Gajewska M. Zarzynska J. Gajkowska B. Motyl T. (2009). IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur. J. Cell Biol. 88, 117130. 10.1016/j.ejcb.2008.09.00419013662 Soldati-Favre D. (2008). Molecular dissection of host cell invasion by the apicomplexans: the glideosome. Parasite 15, 197205. 10.1051/parasite/200815319718814681 Steinfeldt T. Konen-Waisman S. Tong L. Pawlowski N. Lamkemeyer T. Sibley L. D. . (2010). Phosphorylation of mouse immunity-related GTPase (IRG) resistnace proteins is an evasion strategy for virulent Toxoplasma gondii. PLoS Biol. 8:e1000576. 10.1371/journal.pbio.100057621203588 Stolz A. Ernst A. Dikic I. (2014). Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495501. 10.1038/ncb297924875736 Subauste C. S. Andrade R. M. Wessendarp M. (2007). CD40-TRAF6 and autophagy-dependent anti-microbial activity in macrophages. Autophagy 3, 245248. 10.4161/auto.371717224624 Subauste C. S. Wessendarp M. Sorensen R. U. Leiva L. (1999). CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type-1 immune response which can be restored by soluble CD40L trimer. J. Immunol. 162, 66906700. Subramani S. Malhotra V. (2013). Non-autophagic roles of autophagy-related proteins. EMBO Rep. 14, 143151. 10.1038/embor.2012.22023337627 Sun Q. Fan W. Chen K. Ding X. Chen S. Zhong Q. (2008). Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U.S.A. 105, 1921119216. 10.1073/pnas.081045210519050071 Talloczy Z. Jiang W. Virgin H. W. Leib D. A. Scheuner D. Kaufman R. J. . (2002). Regulation of starvation- and virus-induced autophagy by the eIF2α signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 99, 190195. 10.1073/pnas.01248529911756670 Talloczy Z. Virgin H. W. Levine B. (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2, 2429. 10.4161/auto.217616874088 Taylor S. Barragan A. Su C. Fux B. Fentress S. J. Tang K. . (2006). A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314, 17761780. 10.1126/science.113364317170305 Tomley F. M. Soldati D. S. (2001). Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Trends Parasitol. 17, 8188. 10.1016/S1471-4922(00)01761-X11228014 Van Grol J. Muniz-Feliciano L. Portillo J. A. C. Bonilha V. L. Subauste C. S. (2013). CD40 induces anti-Toxoplasma gondii activity in non-hematopoietic cells dependent on autophagy proteins. Infect. Immun. 81, 20022011. 10.1128/IAI.01145-12 Van Grol J. Subauste M. C. Andrade R. M. Fujinaga K. Nelson J. A. Subauste C. S. (2010). HIV-1 inhibits autophagy in bystander macrophages/monocytic cells through Src-Akt and STAT3. PLoS ONE 5:e11733. 10.1371/journal.pone.0011733 Van Kooten C. Banchereau J. (2000). CD40-CD40 ligand. J. Leuk. Biol. 67, 217. 10.1002/jlb.67.1.210647992 Wang Y. Weiss L. M. Orlofsky A. (2009). Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth. J. Biol. Chem. 284, 16941701. 10.1074/jbc.M80789020019028680 Wei Y. Pattingre S. Sinha S. Bassik M. Levine B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678688. 10.1016/j.molcel.2008.06.00118570871 Wild P. Mcewan D. G. Dikic I. (2014). The LC3 interactome at a glance. J. Cell Sci. 127, 39. 10.1242/jcs.14042624345374 Woodman J. P. Dimier I. H. Bout D. T. (1991). Human endothelial cells are activated by IFN-γ to inhibit Toxoplasma gondii replication. J. Immunol. 147, 20192023. 1909738 Yang Z. Ahn H. J. Nam H. W. (2014). Gefitinib inhibits the growth of Toxoplasma gondii in HeLa cells. Korean J. Parasitol. 52, 439441. 10.3347/kjp.2014.52.4.43925246725 Yarden Y. Sliwkowski M. X. (2001). Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127137. 10.1038/3505207311252954 Yoshimori T. (2004). Autophagy: a regulated bulk degradation process inside cells. Biochem. Biophys. Res. Comm. 313, 453458. 10.1016/j.bbrc.2003.07.02314684184 Zhao Y. Ferguson D. J. Wilson D. C. Howard J. C. Sibley L. D. Yap G. S. (2009). Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages. J. Immunol. 182, 37753781. 10.4049/jimmunol.080419019265156 Zhao Y. Wilson D. Matthews S. Yap G. S. (2007). Rapid elimination of Toxoplasma gondii by gamma interferon-primed mouse macrophages is independent of CD40 signaling. Infect. Immun. 75, 47994803. 10.1128/IAI.00738-0717682046 Zhao Z. Fux B. Goodwin M. Dunay I. R. Strong D. Miller B. C. . (2008). Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458469. 10.1016/j.chom.2008.10.00318996346

      Funding. CS is funded by NIH-R01 EY018341 and NIH-R01 EY019250.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016lixingo.com.cn
      www.eleonline.com.cn
      www.hdelec.com.cn
      mashaike.com.cn
      ochygj.com.cn
      olyuan.com.cn
      www.ocup.com.cn
      www.modg.com.cn
      www.qhwq.com.cn
      postar0.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p