Front. Cell. Infect. Microbiol. Frontiers in Cellular and Infection Microbiology Front. Cell. Infect. Microbiol. 2235-2988 Frontiers Media S.A. 10.3389/fcimb.2019.00002 Cellular and Infection Microbiology Review The Super-Donor Phenomenon in Fecal Microbiota Transplantation Wilson Brooke C. 1 Vatanen Tommi 1 2 Cutfield Wayne S. 1 O'Sullivan Justin M. 1 * 1The Liggins Institute, University of Auckland, Auckland, New Zealand 2The Broad Institute of MIT and Harvard, Cambridge, MA, United States

Edited by: Omry Koren, Bar-Ilan University, Israel

Reviewed by: Stefano Fiorucci, University of Perugia, Italy; Ilan Youngster, Assaf Harofeh Medical Center, Israel; Sunny Hei Wong, The Chinese University of Hong Kong, China

*Correspondence: Justin M. O'Sullivan justin.osullivan@auckland.ac.nz

This article was submitted to Microbiome in Health and Disease, a section of the journal Frontiers in Cellular and Infection Microbiology

21 01 2019 2019 9 2 15 10 2018 03 01 2019 Copyright © 2019 Wilson, Vatanen, Cutfield and O'Sullivan. 2019 Wilson, Vatanen, Cutfield and O'Sullivan

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Fecal microbiota transplantation (FMT) has become a highly effective bacteriotherapy for recurrent Clostridium difficile infection. Meanwhile the efficacy of FMT for treating chronic diseases associated with microbial dysbiosis has so far been modest with a much higher variability in patient response. Notably, a number of studies suggest that FMT success is dependent on the microbial diversity and composition of the stool donor, leading to the proposition of the existence of FMT super-donors. The identification and subsequent characterization of super-donor gut microbiomes will inevitably advance our understanding of the microbial component of chronic diseases and allow for more targeted bacteriotherapy approaches in the future. Here, we review the evidence for super-donors in FMT and explore the concept of keystone species as predictors of FMT success. Possible effects of host-genetics and diet on FMT engraftment and maintenance are also considered. Finally, we discuss the potential long-term applicability of FMT for chronic disease and highlight how super-donors could provide the basis for dysbiosis-matched FMTs.

fecal microbiota transplantation (FMT) super-donor microbial dysbiosis clostridium difficile infection (CDI) inflammatory bowel disease (IBD)

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The human gut harbors an abundant and diverse microbial community that is as unique to an individual as a fingerprint (Human Microbiome Project Consortium, 2012). Despite the variability between individuals, it is clear that the composition and functionality of the gut microbiota associates with the health of the host, having specialized functions in nutrition, energy metabolism, immune development, and host defense (Thursby and Juge, 2017). The composition of the gut microbiota is shaped by both genetic and environmental influences, through a continual process that may begin in utero (Perez-Muñoz et al., 2017) and fluctuates throughout an individual's lifetime (Odamaki et al., 2016). In a healthy adult, the bacterial population within the gut predominantly consists of members from the strictly anaerobic Firmicutes and Bacteroidetes phyla, with minor representations from members of the Proteobacteria and Actinobacteria phyla (Eckburg et al., 2005; Ley et al., 2008).

      Because no two gut microbiomes are identical, the definition of what comprises a healthy gut microbiome from an inventory standpoint remains unclear (Human Microbiome Project Consortium, 2012). Despite this, it is generally accepted that having a stable and diverse gut community correlates with a healthy intestinal state (Lloyd-Price et al., 2016). An alteration to the microbiota that is associated with negative functional outcomes on gut physiology, such as localized inflammation or disturbed metabolic processing, is known as gut dysbiosis (Petersen and Round, 2014). Typically, gut dysbiosis is characterized by a low microbial diversity (Kriss et al., 2018).

      Observations of microbial dysbioses are increasingly being associated with a broad range of human diseases, including allergies (Penders et al., 2007; Bunyavanich et al., 2016), asthma (Arrieta et al., 2015), inflammatory bowel disease (IBD) (Fujimoto et al., 2013; Gevers et al., 2014; Takahashi et al., 2016; Nishino et al., 2018), irritable bowel syndrome (IBS) (Liu et al., 2017), obesity (Schwiertz et al., 2010), and cardiovascular disease (Cui et al., 2017; Jie et al., 2017). However, evidence that the dysbiosis is causal in the development of these conditions remains difficult to establish, in all but a few cases. The use of germ-free mice, which are born and raised in a sterile environment, play a pivotal role in demonstrating causative associations between the gut microbiota and disease (Balish and Warner, 2002; Bäckhed et al., 2004; Berer et al., 2011). In the case of obesity, the metabolic phenotype of the donor, be it lean or obese, can be recapitulated by a fecal microbiota transfer into germ-free mice (Ridaura et al., 2013). Germ-free conditions have also been found to be protective against the development of colitis and ileitis in IBD-like mouse models with disease transmission only occurring after transfer of a dysbiotic gut microbiota (Sellon et al., 1998; Schaubeck et al., 2016).

      The mounting evidence of a causal role of the gut microbiota in multiple disease conditions has led to the development of targeted therapeutic approaches designed to alter the microbial composition. Among these, fecal microbiota transplantation (FMT) has consistently demonstrated a capability to overcome dysbiosis associated with a number of conditions through a profound sustained effect on the gut microbiome (e.g., Weingarden et al., 2015; Broecker et al., 2016; Kumar et al., 2017; Moss et al., 2017). FMT is considered an unrefined form of bacteriotherapy that utilizes the diverse microbial gut community of a healthy donor. Typical routes of administration to FMT recipients include endoscopic delivery (Mattila et al., 2012), naso-intestinal tube delivery (Tian et al., 2017), retention enemas (Lee et al., 2014), or capsule ingestion (Youngster et al., 2014).

      The definition of FMT success is primarily based on a positive clinical response in the recipient. However, from a microbiological perspective, FMT success can also be defined by a shift in the gut microbiome profile of an individual toward that of the donor. We argue that FMT success can be considered to be a two-step process; first requiring the transplanted microbiome to engraft within the new host and augment the local commensal community, after which clinical improvement may be observed.

      The selection of an appropriate stool donor is a key component in FMT success (Vermeire et al., 2016). Donors are clinically screened to ensure they do not harbor any transmissible pathogens or disease (Kelly et al., 2015). A detailed list of donor selection guidelines can be found in the recently published evidence-based report on FMT in clinical practice (Cammarota et al., 2017). Donors are typically described as being either effective or ineffective with regards to their ability to contribute to FMT success. Comparing the gut microbiota profiles of different donors has revealed that microbial diversity is a reliable predictor for FMT success (Kump et al., 2018). However, a variety of additional factors, both genetic and environmental, are also known to influence FMT success (Figure 1).

      The microbial diversity of the donor is a good predictor of FMT success in the recipient. However, donor-recipient compatibility also plays an influential role in determining FMT success. Donor-recipient compatibility can stem from genetic factors such as differences in innate immune responses, or environmental factors including diet, xenobiotic exposure, and microbial interactions.

      Recently, the term “super-donor” has been proposed to describe donors whose stool results in significantly more successful FMT outcomes than the stool of other donors. The purpose of this review is to explore evidence for the phenomenon of FMT super-donors and other factors that can contribute to treatment success, particularly focusing on the gut microbiota characterization that has been performed on donors. We discuss the concept of keystone species as predictors of FMT success and consider the possible influence of host-genetics and diet on FMT engraftment and maintenance. Finally, we will suggest a rationale for abandoning the “one stool fits all” approach.

      FMT for Recurrent <italic>Clostridium difficile</italic> Infection

      The ingestion of human stool for health-related purposes was first documented by Chinese herbal doctors in the fourth century (de Groot et al., 2017). In recent years, FMT has been widely and effectively used for the treatment of recurrent Clostridium difficile infections (CDI) in patients that are non-responsive to antibiotic therapy (van Nood et al., 2013; Cammarota et al., 2015; Lee et al., 2016; Kao et al., 2017). C. difficile is an opportunistic gut pathogen that is suppressed in healthy individuals by the commensal gut microbiota (Borriello, 1990). However, when the diversity of the gut microbiota is reduced, e.g., after a course of antibiotics, colonization resistance of the commensal microbiota is disturbed (Leffler and Lamont, 2015). C. difficile then has the potential to proliferate undeterred, producing enterotoxins leading to intestinal inflammation and diarrhea (Warny et al., 2005). Perhaps rather counterintuitively, CDI is treated in the first instance with antibiotics which cure around 80% of cases (Fekety et al., 1997). However, 20% of individuals will experience recurrent CDI after antibiotic therapy (Leffler and Lamont, 2015). FMT is a novel treatment approach for recurrent CDI that acts to restore the commensal gut microbiota and in turn re-establish colonization resistance to inhibit the growth of C. difficile (Eiseman et al., 1958).

      A recent systematic review and meta-analysis of FMT for the treatment of CDI reported a primary cure rate of 92% across 30 case series and seven randomized control trials (Quraishi et al., 2017). Microbial analyses carried out on CDI patients before and after FMT have confirmed FMT is rapidly capable of restoring microbial diversity in patients to donor-like proportions (Song et al., 2013; Shankar et al., 2014; Kelly et al., 2016; Staley et al., 2016; Khanna et al., 2017; Kellingray et al., 2018). The choice of donor, be it a relative, spouse, or anonymous volunteer, does not appear to influence the clinical efficacy of FMT (Kassam et al., 2013). Similarly, no donor-specific effects were found in a large cohort study comprising 1999 CDI patients and 28 FMT donors (Osman et al., 2016). Overall, FMT appears to be a safe and effective treatment for microbial restoration in situations where the overgrowth of a particular pathogen has led to a reduction in the diversity and abundance of the commensal organism population (i.e., severe dysbiosis).

      FMT for Chronic Diseases Associated With Intestinal Dysbiosis

      Encouraged by the overwhelming success of FMT in the resolution of recurrent CDI, researchers have begun to investigate the therapeutic potential of FMT for a broad range of other diseases associated with less severe forms of intestinal dysbiosis. Among these exploratory studies, FMT for the treatment of IBD has featured heavily (systematically reviewed Paramsothy et al., 2017b). However, FMT has also been trialed in several other gastrointestinal disorders [IBS (Pinn et al., 2014; Holvoet et al., 2017, 2018; Mizuno et al., 2017; Aroniadis et al., 2018; Halkjær et al., 2018; Johnsen et al., 2018), constipation (Tian et al., 2017; Ding et al., 2018), allergic colitis (Liu et al., 2017)] and for various liver (Kao et al., 2016; Bajaj et al., 2017; Philips et al., 2017; Ren et al., 2017), blood (Kakihana et al., 2016; Spindelboeck et al., 2017; DeFilipp et al., 2018), metabolic (Vrieze et al., 2012; Kootte et al., 2017), and neurological conditions (He et al., 2017a; Kang et al., 2017; Makkawi et al., 2018). Compared with CDI, the clinical efficacy of FMT for these more chronic diseases has so far been modest with a much higher variability in patient response which likely reflects the multi-faceted etiology of these disorders.

      FMT for Inflammatory Bowel Disease (IBD): The Emergence of the FMT Super-Donor

      IBD encompasses both Crohn's disease and ulcerative colitis; two debilitating disorders characterized by chronic relapsing inflammation of the intestinal mucosa (Gajendran et al., 2018). In contrast to CDI, there is no evidence that IBD results from an overgrowth of one specific pathogen. Rather, the disease is likely brought on by complex interactions involving the host's genetics, immune system, and gut microbiota (Ni et al., 2017). Both Crohn's disease and ulcerative colitis are broadly characterized by a reduced diversity of the gut microbiota with lower relative abundances of the Bacteroidetes and Firmicutes phyla and higher proportions of Proteobacteria (Manichanh et al., 2006; Frank et al., 2007; Sokol et al., 2008; Walker et al., 2011; Gevers et al., 2014; Machiels et al., 2014; Nishino et al., 2018). A specific reduction in the abundance of butyrate-producing bacterial species, particularly Faecalibacterium prausnitzii, has been observed for both Crohn's disease and ulcerative colitis (Fujimoto et al., 2013; Lopez-Siles et al., 2015; Takahashi et al., 2016). Meanwhile, for Crohn's disease, an increase in a pro-inflammatory form of Escherichia coli has also been reported (Darfeuille-Michaud et al., 2004; Martin et al., 2004; Baumgart et al., 2007).

      The first successful case report of an FMT for the treatment of IBD was published in 1989 when a male with refractory ulcerative colitis achieved clinical remission for 6 months following a retention enema with healthy donor stool (Bennet and Brinkman, 1989). Subsequently, a large number of FMT studies have been conducted on IBD patients with variable clinical outcomes, remission rates, and longevity of effect (Zhang et al., 2013; Cui et al., 2015; Moayyedi et al., 2015; Rossen et al., 2015; Suskind et al., 2015; Vaughn et al., 2016; Vermeire et al., 2016; Costello et al., 2017; He et al., 2017b; Nishida et al., 2017; Paramsothy et al., 2017a; Goyal et al., 2018; Kump et al., 2018). Recently, Paramsothy et al. performed a systematic review and meta-analysis of 53 studies (four RCT, 30 cohort, 19 case studies) of FMT in IBD patients (Paramsothy et al., 2017b). Avoiding publication bias, their analysis of cohort studies revealed FMT was more effective at inducing remission in Crohn's disease patients when compared to patients with ulcerative colitis (52 vs. 33%, respectively). With regard to ulcerative colitis, a larger number of FMT infusions and a lower gastrointestinal tract administration were associated with improved rates of remission.

      In contrast to studies of CDI, FMT studies conducted on IBD patients have frequently identified differential recipient responses that have been associated with variability in the donor stool (Khanna, 2018). Currently, the stool used for FMT is not standardized in terms of donor selection (related vs. unrelated), preparation (fresh vs. frozen, aerobic vs. anaerobic), or the dose that is administered (single vs. multiple doses) (Kelly et al., 2015). While inconsistencies in FMT protocols make it difficult to compare different studies, there is a large degree of variability in clinical responses to FMT between recipients who have been subjected to the same study design. It is unfortunate that information on a recipient's genetic background or dietary intake is not yet routinely assessed, particularly given that some instances of IBD have an underlying genetic component (de Lange et al., 2017). Due to the lack of genetic information, investigators have instead focused on the donor-dependent effect and proposed the existence of so called super-donors to explain the variation in recipient responses.

      The first study to record the super-donor effect was a randomized control trial that was investigating the efficacy of FMT for inducing clinical remission in patients with ulcerative colitis (Moayyedi et al., 2015). Moayyedi et al. assigned 75 patients with active disease to weekly enemas containing either fecal material or water (placebo) for a period of 6 weeks. FMT was shown to be superior to the placebo, resulting in significantly higher rates of endoscopic and clinical remission, albeit of modest effect (24 vs. 5%, respectively), after 7 weeks. Of the nine patients who entered remission, seven had received FMT from the same donor. Thus, it was argued that FMT success was donor-dependent.

      Currently, it is not possible to predict the clinical efficacy of a donor before FMT in IBD patients. It has been suggested that remission rates could be improved by pooling donor's stool together, limiting the chances a patient will receive only ineffective stool (Kazerouni and Wein, 2017). This stool pooling approach was recently investigated on an Australian cohort of 85 mild to moderate ulcerative colitis patients, in the largest randomized control trial of FMT for IBD to date (Paramsothy et al., 2017a). Rather than receiving FMT from just one donor, patients in the treatment arm were administered a stool mixture that contained contributions from up to seven different donors with the hope that donor-dependent effects could be homogenized. In addition to this, a far more intensive dosing program was adopted with an initial FMT delivered by colonoscopy that was followed by fecal enemas, five times a week for 8 weeks. Despite the multi-donor and intensive dosing approach, Paramsothy et al. achieved post-FMT remission rates (FMT, 27% vs. placebo, 8%, p = 0.02) that were similar to those reported previously (Moayyedi et al., 2015; Rossen et al., 2015). Notably, however, both clinical and endoscopic remission were required for primary outcome achievement in this study (Paramsothy et al., 2017a), whereas previous studies have mostly focused on either endoscopic or clinical remission rates alone (Ishikawa et al., 2017; Nishida et al., 2017). The pooled stool mixture was demonstrated to have higher microbial diversity than individual stool alone based on OTU count and phylogenetic diversity measures. Subsequent analysis of the different stool batches discovered that one donor appeared to exhibit a super-donor effect. Specifically, patients that received FMT batches that contained stool from this one donor exhibited a higher remission rate than those whose FMT batches did not include the super-donor (37 vs. 18%, respectively) (Paramsothy et al., 2017a).

      FMT for Other Disorders: Is There Also a Super-Donor Effect?

      Evidence of FMT super-donors in other disorders outside of IBD is currently lacking. Case series and reports limit the capacity to identify super-donor effects because of limited sample sizes. However, despite the lack of large cohort studies, several studies have hinted at the possibility of a donor-dependent effect on FMT outcome (Vrieze et al., 2012; Kootte et al., 2017; Mizuno et al., 2017). For example, in a short-term FMT pilot trial on 18 middle-aged men with metabolic syndrome, FMTs from lean donors (allogenic FMT) were found to correspond with a 75% increase in insulin sensitivity and a greater diversity of intestinal bacteria in the recipient compared to autologous FMTs (recipient-derived) (Vrieze et al., 2012). It was later noted that the patients who experienced a more robust improvement of insulin sensitivity post-FMT had all been in receipt of the same donor. In a subsequent study on 38 Caucasian men with metabolic syndrome, lean donor FMT also resulted in a significant improvement in peripheral insulin sensitivity at 6 weeks. However, this effect was lost by the 18 week follow up (Kootte et al., 2017). For the allogenic FMT, 11 lean donors were used, seven of which were used for more than one recipient. Whilst donor-dependent effects were not reported, the authors noted that the “multiple fecal donors might explain the transient and variable effects seen in the allogenic group.” As FMT research in this field progresses from small-scale case series to larger-scale randomized placebo controlled clinical trials, it remains to be seen whether the super-donor phenomenon generalizes to other conditions outside of IBD.

      Microbial and Metabolic Profiling: Can We Characterize a Super-donor?

      To shed light on the varying patient responses to FMT and uncover any donor-dependent effects, a number of studies have carried out microbial profiling on donors and recipients before and after FMT (Vrieze et al., 2012; Moayyedi et al., 2015; Rossen et al., 2015; Vaughn et al., 2016; Vermeire et al., 2016; Bajaj et al., 2017; Fuentes et al., 2017; Mizuno et al., 2017; Paramsothy et al., 2017a; Kump et al., 2018). Despite a lack of large-cohort based studies, one key theme has begun to emerge: the donor's microbial diversity has an influential role in the therapeutic success of FMT (Vermeire et al., 2016; Kump et al., 2018).

      It has been consistently shown that FMT recipients experience a significant increase in gut microbiota diversity, typically shifting in composition toward the profile of their respective stool donor (Vaughn et al., 2016; Paramsothy et al., 2017b). Those who achieve a clinical response to FMT (responders) typically exhibit a higher microbial diversity than those who do not (non-responders) (Vaughn et al., 2016; Vermeire et al., 2016) (Figure 1). In line with these observations, the microbial diversity of the stool donor has been shown to be one of the most significant factors influencing FMT outcome (Kump et al., 2018). In a Belgian IBD cohort, Vermeire et al. observed significantly higher bacterial richness in donors that produced a clinical response to FMT than those who did not (Vermeire et al., 2016).

      A specific microbial signature that correlate with the clinical efficacy of FMT for IBD has also been explored (Moayyedi et al., 2015; Rossen et al., 2015; Vermeire et al., 2016; Fuentes et al., 2017; Nishida et al., 2017; Paramsothy et al., 2017a; Kump et al., 2018). Among the various taxa that have been reported, Clostridium clusters IV and XIVa have consistently been shown to be indicative of a positive patient response to FMT (Rossen et al., 2015; Fuentes et al., 2017; Paramsothy et al., 2017a). Clostridium clusters IV and XIVa are informal groups of bacteria that mostly include genera from the Ruminococcaceae and Lachnospiraceae family, respectively. Specific genera within these Clostridium clusters (e.g., Roseburia, Oscillibacter, Blautia, Dorea) have been shown to increase in relative abundance in responders following FMT (Moayyedi et al., 2015; Rossen et al., 2015; Vermeire et al., 2016; Paramsothy et al., 2017a). Likewise, stool donors that are rich in specific members of Clostridium clusters IV and XIVa have been found to be predictive of sustained FMT response in IBD patients (Rossen et al., 2015; Fuentes et al., 2017). Notably, the gut microbiome from the super-donor identified by Moayyedi et al. was enriched with Ruminococcaceae and Lachnospiraceae families (Moayyedi et al., 2015).

      To further characterize FMT super-donors, metabolic differences between responders and non-responders have been investigated. In particular, an increased production of butyrate by key members within Clostridium clusters IV and XIVa has been associated with prolonged clinical remission in IBD in response to FMT therapy (Fuentes et al., 2017). Butyrate is an important short chain fatty acid (SCFA), produced by bacteria in the gut, with specialized functions in immune modulation and energy provision (Tan et al., 2014). An increased production of butyrate has also been associated with CDI resolution following FMT (Kellingray et al., 2018). Similarly, the butyrate-producing species Roseburia intestinalis was found to increase two and a half fold in obese participants given FMT from lean donors (Vrieze et al., 2012).

      Collectively, published observations suggest that microbial restoration can lead to alterations in metabolic outputs, which may be responsible for resetting the gut homeostasis in dysbiotic individuals. This is consistent with the idea that the key to FMT success lies in the ability of the donor to transfer high levels of particular keystone species to recipients. For inflammatory conditions, such as IBD and metabolic syndrome, transfer of butyrate-producing taxa may be important for therapeutic restoration. By contrast, donors with high abundances of Bifidobacterium may be more effective at treating patients with IBS (Mizuno et al., 2017).

      The concept of keystone species was recently employed in a FMT study for recurrent hepatic encephalopathy (rHE) (Bajaj et al., 2017). Frequent exposure to antibiotics causes dysbiosis and decreased relative abundances of SCFA-producing families in rHE patients (Chen et al., 2011). Therefore, a rationalized donor selection approach was adopted in which microbiome data was used to select a donor with the highest relative abundance of families Lachnospiraceae and Ruminococcaceae from the universal stool donor bank, OpenBiome (Bajaj et al., 2017). In total, 10 patients received a 5-day course of broad-spectrum antibiotics followed by a single FMT enema from the selected donor. At 5 months post-FMT, none of the 10 FMT patients had experienced a recurrence of HE, compared to half (5/10) of the control patients who received the current standard of care (lactulose and rifaximin). Gut microbiome profiling revealed that the FMT patients had an enrichment for Ruminococcaceae but not Lachnospiraceae at 20 days post-FMT. Whilst rationalized donor selection is a step in the right direction, these results suggest that microbial enrichment in the donor does not completely guarantee enrichment in the FMT recipient. The forces governing FMT engraftment must therefore not solely be based on donor input.

      Microbial Interactions Influencing FMT Engraftment

      FMT engraftment involves the integration or establishment of donor-derived microbial strains into the recipient's gut microbial community. Currently, it appears that the most important factors predicting strain engraftment in FMT are taxonomic identity and strain abundance in both the donor and the recipient prior to FMT (Smillie et al., 2018). Deep metagenomic sequencing enables strain level analysis for tracking microbial alterations and engraftment in the post-FMT gut microbiome. For example, Li et al. demonstrated that new microbial strains from the donor had a higher likelihood of engrafting if the recipient already possessed that species (Li et al., 2016). This led them to suggest that differences in microbiome engraftment between individuals of the same donor may stem from strain incompatibilities between the donor and the FMT recipient. Smillie et al. reported that strains of any given species engrafted in an “all or nothing” manner such that strains were either completely retained or completely replaced by donor strains in the recipient's post-FMT gut microbiome (Smillie et al., 2018). Meanwhile on a community level, FMT recipients harbored a complex mixture of both recipient-derived, donor-derived, and newly-acquired species post FMT (Smillie et al., 2018). Overall, it appears that microbial interactions have a significant part to play in FMT engraftment which helps to explain why dual recipients of a donor FMT do not exhibit identical gut microbiota profiles.

      The Influence of Host Genetics: Immune Response to FMT

      Genetics has been estimated to explain 5–10% of the variability in bacterial taxa observed between individuals(Willing et al., 2010; Goodrich et al., 2014, 2016; Wang et al., 2016; Xie et al., 2016; Hall et al., 2017). Among the taxa that have been found to be heritable, the majority have been linked to genes that are involved in innate immunity (Hall et al., 2017). The gut microbiota is known to be intricately connected to the host's immune system through a reciprocal developmental relationship. Specifically, the microbiome is critical for the appropriate development of the immune system, and in turn, the immune system helps modulate the microbiome community through a balance of pro- and anti-inflammatory pathways (Belkaid and Hand, 2014; Vatanen et al., 2016). Therefore, it remains possible that incompatibilities that arise from FMT may be attributable to a heightened immune response to the transplanted microbiota, possibly stemming from an underlying genetic difference between the donor and the recipient.

      Taking this into consideration, an immune screening approach was recently investigated in a FMT case study for ulcerative colitis (Ponce-Alonso et al., 2017). To avoid FMT rejection by the immune system, a rectal biopsy was obtained from an ulcerative colitis patient in order to isolate a population of lymphoid cells. These patient-derived lymphoid cells were incubated with different gut microbiota samples isolated from three healthy stool donors. The donor microbiota that resulted in the lowest induction of pro-inflammatory interleukins was subsequently selected for FMT. The FMT proved to be a clinical success for the ulcerative colitis patient. Gut microbiome profiling revealed the ulcerative colitis patient's gut microbiome had become indistinguishable from that of the donor's, indicating highly successful FMT engraftment. Whilst immune screening in this instance led to a successful outcome for the FMT patient, the associated time and costs of running such a screen limit scalability to larger patient populations. Ideally, the development of a quick and simple rectal swab assay to assess immune response would be a much more feasible screening approach moving forward. In any case, the limited literature in this area must be supplemented by larger-scale studies to confirm the importance of immune screening prior to FMT.

      Factors Affecting the Long-Term Effects of FMT

      It could be argued that a successful FMT not only requires the transplanted microbiota to engraft within the recipient's gut, but the newly acquired organisms must also be supported for therapeutic benefit to be maintained. Based on longitudinal analyses in patients who have received FMT for recurrent CDI, it is known that FMT-induced microbiota alterations can last anywhere from a few days to a few years after transfer (Weingarden et al., 2015; Broecker et al., 2016; Kumar et al., 2017; Moss et al., 2017). A recent FMT/CDI study by Moss et al. discovered that despite short-term similarity between donor and recipient gut microbiota profiles, concordance was significantly reduced after a year (Moss et al., 2017). In the FMT study by Moayeddi et al. eight of the nine ulcerative colitis patients who were in remission at week seven post-FMT were still in remission a year later with no instances of relapse (Moayyedi et al., 2015). Unfortunately, microbiome analyses were not carried out on these patients during follow-up so it can only be presumed that their transplanted microbiota remained stable.

      In addition to underlying genetic differences between donor and the recipient, dietary selection pressures and subsequent antibiotic exposures are also likely to influence the long-term efficacy of FMT therapy. For recurrent CDI, the long-term stability of the FMT is less relevant because clearance of the pathogen and restoration of the commensal population is achieved rapidly. Thus, a gradual drift away from the donor's gut profile is unlikely to result in disease reoccurrence assuming there are no further insults to the commensal gut population. By contrast, the sustainability of the post-FMT microbiota in patients with chronic disease, such as IBD or obesity, may be much more pertinent. This is because the microbial dysbiosis associated with these conditions has not yet been proven in humans to be causal or consequential to disease (Ni et al., 2017). It is more likely that microbial dysbiosis is just one of several factors contributing toward disease progression in these individuals. If so, it may be that FMT provides only temporary relief to patient's symptoms and additional, “top-up FMTs” are required for continual disease management. The optimization of non-invasive FMT delivery approaches, such as capsule-based delivery, will thus be important moving forward.

      Supporting the transplanted microbiome through diet could be a beneficial addition to FMT protocols (Thompson et al., 2016). Diet is known to play a significant role in shaping the developing gut microbiome in infancy as well as throughout adulthood (Singh et al., 2017). The diet provides the commensal microbes with substrates required for their proliferation and survival (Koh et al., 2016). It has been shown that a rapid change in diet, such as a switch from an animal-based to an exclusively plant-based diet, can alter the composition of the gut microbiota within 24 h (David et al., 2014). In inflammatory conditions, such as IBD and metabolic syndrome, FMT may act to overcome the initial hurdle in providing patients with therapeutic levels of anti-inflammatory bacteria. Subsequently, diet may be crucial in providing the necessary fiber required to support the growth of SCFA producing bacteria.

      Abandoning the “One Stool Fits All” Approach

      Microbial dysbiosis is a blanket term for an unhealthy or imbalanced gut community. As such, the population structure that is considered to represent microbial dysbiosis is variable between different disorders (Duvallet et al., 2017). Moreover, the microbiome deficit of one individual may not necessarily mirror that of another individual and therefore it is not surprising that patients respond differently to FMT. As more FMT-related clinical and microbial data are generated, it is becoming clear that “one stool does not fit all” in the context of treating chronic diseases with microbial dysbiosis. Equally so, the selection of donors based solely on clinical screening guidelines provides no guarantee of FMT success. It appears a patient's response to FMT predominantly depends on the capability of the donor's microbiota to restore the specific metabolic disturbances associated with their particular disease phenotype. If this is true, a donor-recipient matching approach, where a patient is screened to identify the functional perturbations specific to their microbiome, may be the best way forward. The patient could then be matched to a specific FMT donor known to be enriched in taxa associated with the metabolic pathway that needs to be restored. Immune tolerance screening would also be beneficial for reducing the impact of donor-recipient incompatibilities stemming from underlying differences in innate immune responses.

      An alternative approach to donor-recipient matching is to administer precision FMTs, which are more akin to a probiotic as opposed to a whole fecal transplant. In addition to the obvious regulatory and consumer advantages inherent in this approach, a precision FMT removes the donor-dependent effects by providing patients with a defined mixture of bacteria that have previously been shown to be beneficial for disease resolution (e.g., enhancing butyrate-production in inflammatory conditions). For example, providing IBD patients with a targeted microbiota-based formulation containing only butyrate-producers would be a logical, safer, and potentially patient preferable alternative to whole fecal transplantation. Precision approaches have so far been trialed in CDI treatment but with mixed results (Petrof et al., 2013; Emanuelsson et al., 2014). It may be that the microbial community structure as a whole plays a more influential role in FMT success than the isolation of critical species alone. Regardless, targeted bacteriotherapy approaches should be investigated for chronic diseases as a way of circumventing the risks associated with administering fecal material.

      Whilst much of the FMT literature has focused on bacteria being the therapeutically active agent, the successful resolution of CDI using sterile fecal filtrates has suggested non-bacterial elements might play a more significant role than previously appreciated (Ott et al., 2017). In a preliminary case series, five patients with recurrent CDI were administered a stool solution that had been filtered to remove small particles and bacteria. The fecal filtrate was found to contain bacterial debris, proteins, DNA, antimicrobial compounds, metabolites, and viruses. Notably, a few days post-transfer, all five patients had achieved CDI resolution and remained symptom free for the duration of the study (up to 6 months). Although limited by the number of patients who were treated, this preliminary study demonstrates that resolution of CDI can be achieved by elements other than the live bacterial component of stool. Consistent with this, Zuo et al. recently reported that bacteriophage transfer during FMT was associated with CDI resolution outcomes (Zuo et al., 2018). Similarly, Conceição-Neto et al. suggested the eukaryotic virome was associated with the successful treatment of ulcerative colitis by FMT (Conceição-Neto et al., 2018).

      Conclusion

      Despite being reported in the literature as far back as the fourth century, FMT research is still in its infancy, particularly with regards to its mechanism of effect. The lack of large randomized controlled clinical trials of FMT for the treatment of chronic diseases has meant that many observations, such as the existence of FMT super-donors, are not yet robustly supported by empirical evidence. The growing number of small-scale studies, whilst difficult to compare with each other, do however suggest the donor plays an influential role in FMT outcomes for indications outside of CDI. Considerable effort has since been spent in identifying the various factors which contribute to FMT success. In a broad sense, high diversity of the gut microbiota, particularly in the donor, appears to best predict a patient's response to FMT. More specifically, the efficacy of FMT likely depends on the ability of the donor to provide the necessary taxa capable of restoring metabolic deficits in recipients that are contributing toward disease. Further characterization of super-donors will likely result in the development of more refined FMT formulations to help standardize therapy and reduce variability in patient response. In parallel, continued optimization of FMT protocols, including a shift toward capsule-based approaches, will help combat the longevity issues associated with FMT and create a more patient-friendly alternative to current disease management schemes.

      Author Contributions

      BW wrote the manuscript. TV and WC commented on the manuscript. JOS directed and contributed to the writing of the manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Aroniadis O. C. Brandt L. J. Oneto C. Feuerstadt P. Sherman A. Wolkoff A. W. . (2018). 742 - A double-blind, randomized, placebo-controlled trial of fecal microbiota transplantation capsules (FMTC) for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D). Gastroenterology 154, S-154S-155. 10.1016/S0016-5085(18)30932-6 Arrieta M. C. Stiemsma L. T. Dimitriu P. A. Thorson L. Russell S. Yurist-Doutsch S. . (2015). Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7:307ra152. 10.1126/scitranslmed.aab227126424567 Bäckhed F. Ding H. Wang T. Hooper L. V. Koh G. Y. Nagy A. . (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci.U.S.A. 101, 1571815723. 10.1073/pnas.040707610115505215 Bajaj J. S. Kassam Z. Fagan A. Gavis E. A. Liu E. Cox I. J. . (2017). Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66, 17271738. 10.1002/hep.2930628586116 Balish E. Warner T. (2002). Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am. J. Pathol. 160, 22532257. 10.1016/S0002-9440(10)61172-812057927 Baumgart M. Dogan B. Rishniw M. Weitzman G. Bosworth B. Yantiss R. . (2007). Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISME J. 1, 403418. 10.1038/ismej.2007.5218043660 Belkaid Y. Hand T. W. (2014). Role of the microbiota in immunity and inflammation. Cell 157, 121141. 10.1016/j.cell.2014.03.01124679531 Bennet J. D. Brinkman M. (1989). Treatment of ‘ulcerative colitis by implantation of normal colonic flora. Lancet 1:164. 10.1016/S0140-6736(89)91183-52563083 Berer K. Mues M. Koutrolos M. Rasbi Z. A. Boziki M. Johner C. . (2011). Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538541. 10.1038/nature1055422031325 Borriello S. P. (1990). The influence of the normal flora on Clostridium difficile colonisation of the gut. Ann. Med. 22, 6167. 10.3109/078538990091472442184849 Broecker F. Klumpp J. Schuppler M. Russo G. Biedermann L. Hombach M. . (2016). Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation. Cold Spring Harb. Mol. Case Stud. 2:a000448. 10.1101/mcs.a00044827148577 Bunyavanich S. Shen N. Grishin A. Wood R. Burks W. Dawson P. . (2016). Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 138, 11221130. 10.1016/j.jaci.2016.03.04127292825 Cammarota G. Ianiro G. Tilg H. Rajilić-Stojanović M. Kump P. Satokari R. . (2017). European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66, 569580. 10.1136/gutjnl-2016-31301728087657 Cammarota G. Masucci L. Ianiro G. Bibbò S. Dinoi G. Costamagna G. . (2015). Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 41, 835843. 10.1111/apt.1314425728808 Chen Y. Yang F. Lu H. Wang B. Chen Y. Lei D. . (2011). Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54, 562572. 10.1002/hep.2442321574172 Conceição-Neto N. Deboutte W. Dierckx T. Machiels K. Wang J. Yinda K. C. . (2018). Low eukaryotic viral richness is associated with faecal microbiota transplantation success in patients with UC. Gut 67, 15581559. 10.1136/gutjnl-2017-31528129066574 Costello S. P. Soo W. Bryant R. V. Jairath V. Hart A. L. Andrews J. M. (2017). Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment. Pharmacol. Ther. 46, 213224. 10.1111/apt.1417328612983 Cui B. Feng Q. Wang H. Wang M. Peng Z. Li P. . (2015). Fecal microbiota transplantation through mid-gut for refractory Crohn's disease: safety, feasibility, and efficacy trial results. J. Gastroenterol. Hepatol. 30, 5158. 10.1111/jgh.1272725168749 Cui L. Zhao T. Hu H. Zhang W. Hua X. (2017). Association study of gut flora in coronary heart disease through high-throughput sequencing. Biomed. Res. Int. 2017:3796359. 10.1155/2017/3796359 Darfeuille-Michaud A. Boudeau J. Bulois P. Neut C. Glasser A. L. Barnich N. . (2004). High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412421. 10.1053/j.gastro.2004.04.06115300573 David L. A. Maurice C. F. Carmody R. N. Gootenberg D. B. Button J. E. Wolfe B. E. . (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559563. 10.1038/nature1282024336217 de Groot P. F. Frissen M. N. de Clercq N. C. Nieuwdorp M. (2017). Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 8, 253267. 10.1080/19490976.2017.129322428609252 de Lange K. M. Moutsianas L. Lee J. C. Lamb C. A. Luo Y. Kennedy N. A. . (2017). Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256261. 10.1038/ng.376028067908 DeFilipp Z. Peled J. U. Li S. Mahabamunuge J. Dagher Z. Slingerland A. E. . (2018). Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2, 745753. 10.1182/bloodadvances.201801773129592876 Ding C. Fan W. Gu L. Tian H. Ge X. Gong J. . (2018). Outcomes and prognostic factors of fecal microbiota transplantation in patients with slow transit constipation: results from a prospective study with long-term follow-up. Gastroenterol. Rep. 6, 101107. 10.1093/gastro/gox03629780597 Duvallet C. Gibbons S. M. Gurry T. Irizarry R. A. Alm E. J. (2017). Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8:1784. 10.1038/s41467-017-01973-829209090 Eckburg P. B. Bik E. M. Bernstein C. N. Purdom E. Dethlefsen L. Sargent M. . (2005). Diversity of the human intestinal microbial flora. Science 308, 16351638. 10.1126/science.111059115831718 Eiseman B. Silen W. Bascom G. S. Kauvar A. J. (1958). Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854859. 13592638 Emanuelsson F. Claesson B. E. Ljungström L. Tvede M. Ung K. A. (2014). Faecal microbiota transplantation and bacteriotherapy for recurrent Clostridium difficile infection: a retrospective evaluation of 31 patients. Scand. J. Infect. Dis. 46, 8997. 10.3109/00365548.2013.85818124354958 Fekety R. McFarland L. V. Surawicz C. M. Greenberg R. N. Elmer G. W. Mulligan M. E. (1997). Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blinded trial. Clin. Infect. Dis. 24, 324333. 10.1093/clinids/24.3.3249114180 Frank D. N. St. Amand A. L. Feldman R. A. Boedeker E. C. Harpaz N. Pace N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci.U.S.A. 104, 1378013785. 10.1073/pnas.070662510417699621 Fuentes S. Rossen N. G. van der Spek M. J. Hartman J. H. Huuskonen L. Korpela K. . (2017). Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME J. 11, 18771889. 10.1038/ismej.2017.4428398347 Fujimoto T. Imaeda H. Takahashi K. Kasumi E. Bamba S. Fujiyama Y. . (2013). Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J. Gastroenterol. Hepatol. 28, 613619. 10.1111/jgh.1207323216550 Gajendran M. Loganathan P. Catinella A. P. Hashash J. G. (2018). A comprehensive review and update on Crohn's disease. Dis. Mon. 64, 2057. 10.1016/j.disamonth.2017.07.00128826742 Gevers D. Kugathasan S. Denson L. A. Vázquez-Baeza Y. Van Treuren W. Ren B. . (2014). The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382392. 10.1016/j.chom.2014.02.00524629344 Goodrich J. K. Davenport E. R. Beaumont M. Jackson M. A. Knight R. Ober C. . (2016). Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731743. 10.1016/j.chom.2016.04.01727173935 Goodrich J. K. Waters J. L. Poole A. C. Sutter J. L. Koren O. Blekhman R. . (2014). Human genetics shape the gut microbiome. Cell 159, 789799. 10.1016/j.cell.2014.09.05325417156 Goyal A. Yeh A. Bush B. R. Firek B. A. Siebold L. M. Rogers M. B. . (2018). Safety, clinical response, and microbiome findings following fecal microbiota transplant in children with inflammatory bowel disease. Inflamm. Bowel Dis. 24, 410421. 10.1093/ibd/izx03529361092 Halkjær S. I. Christensen A. H. Lo B. Z. S. Browne P. D. Günther S. Hansen L. H. . (2018). Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67, 21072115. 10.1136/gutjnl-2018-31643429980607 Hall A. B. Tolonen A. C. Xavier R. J. (2017). Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690699. 10.1038/nrg.2017.6328824167 He Z. Cui B. T. Zhang T. Li P. Long C. Y. Ji G. Z. . (2017a). Fecal microbiota transplantation cured epilepsy in a case with Crohn's disease: the first report. World J. Gastroenterol. 23, 35653568. 10.3748/wjg.v23.i19.356528596693 He Z. Li P. Zhu J. Cui B. Xu L. Xiang J. . (2017b). Multiple fresh fecal microbiota transplants induces and maintains clinical remission in Crohn's disease complicated with inflammatory mass. Sci Rep. 7:4753. 10.1038/s41598-017-04984-z28684845 Holvoet T. Joossens M. Boelens J. Christiaens E. Heyerick L. Verhasselt B. . (2018). 617 - fecal microbiota transplantation in irritable bowel syndrome with predominant abdominal bloating: results from a double blind, placebo-controlled clinical trial. Gastroenterology 154:S-130. 10.1016/S0016-5085(18)30860-6 Holvoet T. Joossens M. Wang J. Boelens J. Verhasselt B. Laukens D. . (2017). Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. Gut 66, 980982. 10.1136/gutjnl-2016-31251327511198 Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature 486, 207214. 10.1038/nature11234 Ishikawa D. Sasaki T. Osada T. Kuwahara-Arai K. Haga K. Shibuya T. . (2017). Changes in intestinal microbiota following combination therapy with fecal microbial transplantation and antibiotics for Ulcerative Colitis. Inflamm. Bowel Dis. 23, 116125. 10.1097/MIB.000000000000097527893543 Jie Z. Xia H. Zhong S. L. Feng Q. Li S. Liang S. . (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8:845. 10.1038/s41467-017-00900-129018189 Johnsen P. H. Hilpüsch F. Cavanagh J. P. Leikanger I. S. Kolstad C. Valle P. C. . (2018). Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol. Hepatol. 3, 1724. 10.1016/S2468-1253(17)30338-229100842 Kakihana K. Fujioka Y. Suda W. Najima Y. Kuwata G. Sasajima S. . (2016). Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 128, 20832088. 10.1182/blood-2016-05-71765227461930 Kang D. W. Adams J. B. Gregory A. C. Borody T. Chittick L. Fasano A. . (2017). Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10. 10.1186/s40168-016-0225-728122648 Kao D. Roach B. Park H. Hotte N. Madsen K. Bain V. . (2016). Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology 63, 339340. 10.1002/hep.2812126264779 Kao D. Roach B. Silva M. Beck P. Rioux K. Kaplan G. G. . (2017). Effect of oral capsule– vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection. JAMA 318:1985. 10.1001/jama.2017.17077 Kassam Z. Lee C. H. Yuan Y. Hunt R. H. (2013). Fecal Microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am. J. Gastroenterol. 108, 500508. 10.1038/ajg.2013.5923511459 Kazerouni A. Wein L. M. (2017). Exploring the efficacy of pooled stools in fecal microbiota transplantation for microbiota-associated chronic diseases. PLoS ONE 12:e0163956. 10.1371/journal.pone.016395628068341 Kellingray L. Gall G. L. Defernez M. Beales I. L. P. Franslem-Elumogo N. Narbad A. (2018). Microbial taxonomic and metabolic alterations during faecal microbiota transplantation to treat Clostridium difficile infection. J. Infect. 77, 107118. 10.1016/j.jinf.2018.04.01229746938 Kelly C. R. Kahn S. Kashyap P. Laine L. Rubin D. Atreja A. . (2015). Update on fecal microbiota transplantation : indications, methodologies, mechanisms, and outlook. Gastroenterology 149, 223237. 10.1053/j.gastro.2015.05.00825982290 Kelly C. R. Khoruts A. Staley C. Sadowsky M. J. Abd M. Alani M. . (2016). Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection. Ann. Intern. Med. 165, 609616. 10.7326/M16-027127547925 Khanna S. (2018). Microbiota replacement therapies: innovation in gastrointestinal care. Clin. Pharmacol. Ther. 103, 102111. 10.1002/cpt.92329071710 Khanna S. Vazquez-Baeza Y. González A. Weiss S. Schmidt B. Muñiz-Pedrogo D. A. . (2017). Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome 5:55. 10.1186/s40168-017-0269-328506317 Koh A. De Vadder F. Kovatcheva-Datchary P. Bäckhed F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 13321345. 10.1016/j.cell.2016.05.04127259147 Kootte R. S. Levin E. Salojärvi J. Smits L. P. Hartstra A. V. Udayappan S. D. . (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611619.e6. 10.1016/j.cmet.2017.09.00828978426 Kriss M. Hazleton K. Z. Nusbacher N. M. Martin C. G. Lozupone C. A. (2018). Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 3440. 10.1016/j.mib.2018.07.00330036705 Kumar R. Yi N. Zhi D. Eipers P. Goldsmith K. T. Dixon P. . (2017). Identification of donor microbe species that colonize and persist long term in the recipient after fecal transplant for recurrent Clostridium difficile. npj Biofilms Microb. 3:12. 10.1038/s41522-017-0020-7 Kump P. Wurm P. Gröchenig H. P. Wenzl H. Petritsch W. Halwachs B. . (2018). The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment. Pharmacol. Ther. 47, 6777. 10.1111/apt.1438729052237 Lee C. H. Belanger J. E. Kassam Z. Smieja M. Higgins D. Broukhanski G. . (2014). The outcome and long-term follow-up of 94 patients with recurrent and refractory Clostridium difficile infection using single to multiple fecal microbiota transplantation via retention enema. Eur. J. Clin. Microbiol. Infect. Dis. 33, 14251428. 10.1007/s10096-014-2088-924627239 Lee C. H. Steiner T. Petrof E. O. Smieja M. Roscoe D. Nematallah A. . (2016). Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection. JAMA 315, 142149. 10.1001/jama.2015.1809826757463 Leffler D. A. Lamont J. T. (2015). Clostridium difficile infection. N Engl J Med. 372, 15391548. 10.1056/NEJMra140377225875259 Ley R. E. Hamady M. Lozupone C. Turnbaugh P. J. Ramey R. R. Bircher J. S. . (2008). Evolution of mammals and their gut microbes. Science 320, 16471651. 10.1126/science.115572518497261 Li S. S. Zhu A. Benes V. Costea P. I. Hercog R. Hildebrand F. . (2016). Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352, 586589. 10.1126/science.aad885227126044 Liu H. N. Wu H. Chen Y. Z. Chen Y. J. Shen X. Z. Liu T. T. (2017). Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: a systematic review and meta-analysis. Dig. Liver Dis. 49, 331337. 10.1016/j.dld.2017.01.14228179092 Liu S. X. Li Y. H. Dai W. K. Li X. S. Qiu C. Z. Ruan M. L. . (2017). Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World J. Gastroenterol. 23, 85708581. 10.3748/wjg.v23.i48.857029358865 Lloyd-Price J. Abu-Ali G. Huttenhower C. (2016). The healthy human microbiome. Genome Med. 8:51. 10.1186/s13073-016-0307-y27122046 Lopez-Siles M. Martinez-Medina M. Abellà C. Busquets D. Sabat-Mir M. Duncan S. H. . (2015). Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl. Environ. Microbiol. 81, 75827592. 10.1128/AEM.02006-1526296733 Machiels K. Joossens M. Sabino J. De Preter V. Arijs I. Eeckhaut V. . (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 12751283. 10.1136/gutjnl-2013-30483324021287 Makkawi S. Camara-Lemarroy C. Metz L. (2018). Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 5:e459. 10.1212/NXI.000000000000045929619403 Manichanh C. Rigottier-Gois L. Bonnaud E. Gloux K. Pelletier E. Frangeul L. . (2006). Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205211. 10.1136/gut.2005.07381716188921 Martin H. M. Campbell B. J. Hart C. A. Mpofu C. Nayar M. Singh R. . (2004). Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology 127, 8093. 10.1053/j.gastro.2004.03.05415236175 Mattila E. Uusitalo-Seppälä R. Wuorela M. Lehtola L. Nurmi H. Ristikankare M. . (2012). Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology 142, 490496. 10.1053/j.gastro.2011.11.03722155369 Mizuno S. Masaoka T. Naganuma M. Kishimoto T. Kitazawa M. Kurokawa S. . (2017). Bifidobacterium-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome. Digestion 96, 2938. 10.1159/00047191928628918 Moayyedi P. Surette M. G. Kim P. T. Libertucci J. Wolfe M. Onischi C. . (2015). Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102109.e6. 10.1053/j.gastro.2015.04.00125857665 Moss E. L. Falconer S. B. Tkachenko E. Wang M. Systrom H. Mahabamunuge J. . (2017). Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLoS ONE 12:e0182585. 10.1371/journal.pone.018258528827811 Ni J. Wu G. D. Albenberg L. Tomov V. T. (2017). Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573584. 10.1038/nrgastro.2017.88 Nishida A. Imaeda H. Ohno M. Inatomi O. Bamba S. Sugimoto M. . (2017). Efficacy and safety of single fecal microbiota transplantation for Japanese patients with mild to moderately active ulcerative colitis. J. Gastroenterol. 52, 476482. 10.1007/s00535-016-1271-427730312 Nishino K. Nishida A. Inoue R. Kawada Y. Ohno M. Sakai S. . (2018). Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 53, 95106. 10.1007/s00535-017-1384-428852861 Odamaki T. Kato K. Sugahara H. Hashikura N. Takahashi S. Xiao J. Z. . (2016). Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16:90. 10.1186/s12866-016-0708-5 Osman M. Stoltzner Z. O'Brien K. Ling K. Koelsch E. Dubois N. . (2016). Donor efficacy in fecal microbiota transplantation for recurrent clostridium difficile: evidence from a 1,999-patient cohort. Open Forum Infect. Dis. 3, 841. 10.1093/ofid/ofw194.48 Ott S. J. Waetzig G. H. Rehman A. Moltzau-Anderson J. Bharti R. Grasis J. A. . (2017). Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799811.e7. 10.1053/j.gastro.2016.11.01027866880 Paramsothy S. Kamm M. A. Kaakoush N. O. Walsh A. J. van den Bogaerde J. Samuel D. . (2017a). Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389, 12181228. 10.1016/S0140-6736(17)30182-428214091 Paramsothy S. Paramsothy R. Rubin D. T. Kamm M. A. Kaakoush N. O. Mitchell H. M. . (2017b). Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohn's Colitis 11, 11801199. 10.1093/ecco-jcc/jjx06328486648 Penders J. Thijs C. van den Brandt P. A. Kummeling I. Snijders B. Stelma F. . (2007). Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth Cohort study. Gut 56, 661667. 10.1136/gut.2006.10016417047098 Perez-Muñoz M. E. Arrieta M.-C. Ramer-Tait A. E. Walter J. (2017). A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5:48. 10.1186/s40168-017-0268-4 Petersen C. Round J. L. (2014). Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 16, 10241033. 10.1111/cmi.1230824798552 Petrof E. O. Gloor G. B. Vanner S. J. Weese S. J. Carter D. Daigneault M. C. . (2013). Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating' the gut. Microbiome 1:3. 10.1186/2049-2618-1-324467987 Philips C. A. Pande A. Shasthry S. M. Jamwal K. D. Khillan V. Chandel S. S. . (2017). Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin. Gastroenterol. Hepatol. 15, 600602. 10.1016/j.cgh.2016.10.02927816755 Pinn D. M. Aroniadis O. C. Brandt L. J. (2014). Is fecal microbiota transplantation the answer for irritable bowel syndrome? A single-center experience. Am. J. Gastroenterol. 109, 18311832. 10.1038/ajg.2014.29525373585 Ponce-Alonso M. Garcia-Fernandez S. Aguilera L. Rodriguez de santiago E. Foruny J. R. Roy G. . (2017). P782 A new compatibility test for donor selection for faecal microbiota transplantation in ulcerative colitis. J Crohn's Colitis 11, S480S481. 10.1093/ecco-jcc/jjx002.903 Quraishi M. N. Widlak M. Bhala N. Moore D. Price M. Sharma N. . (2017). Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46, 479493. 10.1111/apt.1420128707337 Ren Y. D. Ye Z. S. Yang L. Z. Jin L. X. Wei W. J. Deng Y. Y. . (2017). Fecal microbiota transplantation induces hepatitis B virus e-antigen (HBeAg) clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology 65, 17651768. 10.1002/hep.2900828027582 Ridaura V. K. Faith J. J. Rey F. E. Cheng J. Duncan A. E. Kau A. L. . (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214. 10.1126/science.1241214 Rossen N. G. Fuentes S. van der Spek M. J. Tijssen J. G. Hartman J. H. Duflou A. . (2015). Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110118.e4. 10.1053/j.gastro.2015.03.04525836986 Schaubeck M. Clavel T. Calasan J. Lagkouvardos I. Haange S. B. Jehmlich N. . (2016). Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225237. 10.1136/gutjnl-2015-30933325887379 Schwiertz A. Taras D. Schäfer K. Beijer S. Bos N. A. Donus C. . (2010). Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190195. 10.1038/oby.2009.16719498350 Sellon R. K. Tonkonogy S. Schultz M. Dieleman L. A. Grenther W. Balish E. . (1998). Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 52245231. 9784526 Shankar V. Hamilton M. J. Khoruts A. Kilburn A. Unno T. Paliy O. . (2014). Species and genus level resolution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation. Microbiome 2:13. 10.1186/2049-2618-2-1324855561 Singh R. K. Chang H. W. Yan D. Lee K. M. Ucmak D. Wong K. . (2017). Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15:73. 10.1186/s12967-017-1175-y Smillie C. S. Sauk J. Gevers D. Friedman J. Sung J. Youngster I. . (2018). Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 23, 229240.e5. 10.1016/j.chom.2018.01.00329447696 Sokol H. Pigneur B. Watterlot L. Lakhdari O. Bermúdez-Humarán L. G. Gratadoux J. J. . (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U S A. 105, 1673116736. 10.1073/pnas.080481210518936492 Song Y. Garg S. Girotra M. Maddox C. von Rosenvinge E. C. Dutta A. . (2013). Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection. PLoS ONE. 8:e81330. 10.1371/journal.pone.008133024303043 Spindelboeck W. Schulz E. Uhl B. Kashofer K. Aigelsreiter A. Zinke-Cerwenka W. . (2017). Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease. Haematologica 102, e210e213. 10.3324/haematol.2016.15435128154090 Staley C. Kelly C. R. Brandt L. J. Khoruts A. Sadowsky M. J. (2016). Complete microbiota engraftment is not essential for recovery from recurrent Clostridium difficile infection following fecal microbiota transplantation. MBio 7, e01965e01916. 10.1128/mBio.01965-16 Suskind D. L. Brittnacher M. J. Wahbeh G. Shaffer M. L. Hayden H. S. Qin X. . (2015). Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn's disease. Inflamm. Bowel Dis. 21, 556563. 10.1097/MIB.000000000000030725647155 Takahashi K. Nishida A. Fujimoto T. Fujii M. Shioya M. Imaeda H. . (2016). Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn's disease. Digestion 93, 5965. 10.1159/00044176826789999 Tan J. McKenzie C. Potamitis M. Thorburn A. N. Mackay C. R. Macia L. (2014). The role of short-chain fatty acids in health and disease. Adv. Immunol. 121:91119. 10.1016/B978-0-12-800100-4.00003-924388214 Thompson S. Guetterman H. Taylor A. Bogner A. Martin D. Farrell J. J. . (2016). Dietary predictors of fecal microbiota transplantation success. J. Acad. Nutr. Diet. 116:A76. 10.1016/j.jand.2016.06.267 Thursby E. Juge N. (2017). Introduction to the human gut microbiota. Biochem. J. 474, 18231836. 10.1042/BCJ2016051028512250 Tian H. Ge X. Nie Y. Yang L. Ding C. McFarland L.V. . (2017). Fecal microbiota transplantation in patients with slow-transit constipation: a randomized, clinical trial. PLoS ONE 12:e0171308. 10.1371/journal.pone.017130828158276 van Nood E. Vrieze A. Nieuwdorp M. Fuentes S. Zoetendal E. G. de Vos W. M. . (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407415. 10.1056/NEJMoa120503723323867 Vatanen T. Kostic A. D. d'Hennezel E. Siljander H. Franzosa E.A. Yassour M. . (2016). Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842853. 10.1016/j.cell.2016.04.007 Vaughn B. P. Vatanen T. Allegretti J. R. Bai A. Xavier R. J. Korzenik J. . (2016). Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn's disease. Inflamm. Bowel Dis. 22, 21822190. 10.1097/MIB.000000000000089327542133 Vermeire S. Joossens M. Verbeke K. Wang J. Machiels K. Sabino J. . (2016). Donor species richness determines faecal microbiota transplantation success in inflammatory bowel disease. J Crohn's Colitis 10, 387394. 10.1093/ecco-jcc/jjv20326519463 Vrieze A. Van Nood E. Holleman F. Salojärvi J. Kootte R. S. Bartelsman J. F. . (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913916.e7. 10.1053/j.gastro.2012.06.03122728514 Walker A. W. Sanderson J. D. Churcher C. Parkes G. C. Hudspith B. N. Rayment N. . (2011). High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 11:7. 10.1186/1471-2180-11-7 Wang J. Thingholm L. B. Skiecevičiene J. Rausch P. Kummen M. Hov J. R. . (2016). Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 13961406. 10.1038/ng.369527723756 Warny M. Pepin J. Fang A. Killgore G. Thompson A. Brazier J. . (2005). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366, 10791084. 10.1016/S0140-6736(05)67420-X16182895 Weingarden A. González A. Vázquez-Baeza Y. Weiss S. Humphry G. Berg-Lyons D. . (2015). Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3:10. 10.1186/s40168-015-0070-025825673 Willing B. P. Dicksved J. Halfvarson J. Andersson A. F. Lucio M. Zheng Z. . (2010). A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 18441854.e1. 10.1053/j.gastro.2010.08.04920816835 Xie H. Guo R. Zhong H. Feng Q. Lan Z. Qin B. . (2016). Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572584.e3. 10.1016/j.cels.2016.10.00427818083 Youngster I. Russell G. H. Pindar C. Ziv-Baran T. Sauk J. Hohmann E. L. (2014). Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312:1772. 10.1001/jama.2014.13875 Zhang F. M. Wang H. G. Wang M. Cui B. T. Fan Z. N. Ji G. Z. (2013). Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn's disease. World J. Gastroenterol. 19, 72137216. 10.3748/wjg.v19.i41.721324222969 Zuo T. Wong S. H. Lam K. Lui R. Cheung K. Tang W. . (2018). Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634643. 10.1136/gutjnl-2017-31395228539351

      Funding. The publishing fee for this review article was covered by the University of Auckland Foundation (grant number 3713937).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.mallbao.com.cn
      hyqpt.com.cn
      www.iholdzhu.com.cn
      www.hrpogg.com.cn
      gisedu.com.cn
      gdhangfa.com.cn
      tuuujy.com.cn
      suzhouerp.com.cn
      www.rsfnpp.com.cn
      smoz.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p