Front. Cell Dev. Biol. Frontiers in Cell and Developmental Biology Front. Cell Dev. Biol. 2296-634X Frontiers Media S.A. 10.3389/fcell.2021.662916 Cell and Developmental Biology Review The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models James David M. 1 Davidson Elizabeth A. 1 Yanes Julio 1 Moshiree Baharak 2 Dallman Julia E. 1 * 1Department of Biology, University of Miami, Coral Gables, FL, United States 2Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States

Edited by: Yasuhito Shimada, Mie University, Japan

Reviewed by: Arlene Mannion, National University of Ireland Galway, Ireland; Youliang Wang, Beijing Institute of Technology, China

*Correspondence: Julia E. Dallman, j.dallman@miami.edu

This article was submitted to Molecular Medicine, a section of the journal Frontiers in Cell and Developmental Biology

15 04 2021 2021 9 662916 01 02 2021 15 03 2021 Copyright © 2021 James, Davidson, Yanes, Moshiree and Dallman. 2021 James, Davidson, Yanes, Moshiree and Dallman

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD’s impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.

gastrointestinal microbiome comorbidities ASD GI CNS

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The contribution of the gut-brain-microbiome axis to health and disease states is a relatively new field of research (Figure 1) with increasing interest from both public and scientific spheres (Drossman and Hasler, 2016). An understanding of this axis draws on a range of disciplines including neurobiology, gastroenterology, microbiology, endocrinology, and psychology (Liang et al., 2018; Neuhaus et al., 2018). This breadth of subjects relevant to the gut-brain-microbiome field speaks to the diversity of its potential applications. Specifically, its relevance to research on neurological disorders like autism spectrum disorder (ASD) is of particular interest, as such disorders often cause a wide range of symptoms involving multiple body systems. Furthermore, the interconnected aspects of the gut-brain-microbiome offer alternative causal explanations and treatment strategies for symptoms traditionally understood to be strictly caused by deficits within the central nervous system (CNS) (Neuhaus et al., 2018; Lefter et al., 2019; Srikantha and Mohajeri, 2019; Tye et al., 2019). While ASD is still diagnosed by deficits in social communication, repetitive behaviors, and/or restrictive interests, comorbidities (co-occurring symptoms) like seizures, epilepsy, sleep disturbance, hypotonia, and GI distress are also common with significant negative impacts on quality of life (Christensen et al., 2018; “IACC, 2019 Strategic Plan For Autism Spectrum Disorder 2018–2019 Update,” 2019; Leader et al., 2020). Here, we review how recent studies of the gut-brain-microbiome axis have changed our understanding of ASD related symptoms and highlight the important role the zebrafish model can play in future research.

      Publication trends as listed by PubMed/NLM over the last two decades, search criteria for each is “gastrointestinal + autism” and “gastrointestinal + zebrafish.” Including all three search terms (GI + ASD + zebrafish) only resulted in three publications, the earliest in 2014.

      Since it was first described in a small subset of patients in 1943, the clinical definition of ASD has been subject to an ever-changing set of criteria in an attempt to capture a condition that is both common and heterogeneous. Likewise, estimates of the prevalence of comorbidities associated with ASD have changed (Geschwind, 2009; Chaidez et al., 2014; Bresnahan et al., 2015; De Rubeis and Buxbaum, 2015; Tye et al., 2019). This shift in criteria likely stems from diverse causal factors including hundreds of implicated genes, environmental, and gene-environment interactions that contribute to ASD prevalence (Chaste and Leboyer, 2012). Our current understanding is that ASD impacts more than 1% of the population and is both etiologically and clinically heterogeneous. Given this heterogeneity, addressing underlying mechanisms to develop treatment strategies has been difficult (Manoli and State, 2021). Moreover, the field would greatly benefit from determining how body systems work cooperatively and/or antagonistically to produce both core behavioral symptoms of ASD and the comorbid symptoms like gastrointestinal (GI) distress (McElhanon et al., 2014; Pellicano et al., 2014; Frye et al., 2015; Latorre et al., 2016; Rao and Gershon, 2016; Rose et al., 2017; Goodspeed et al., 2020). GI distress occurs at a disproportionately higher rate in individuals with ASD than the general population, and symptom severity ranges from relatively low-impact to severe (Bresnahan et al., 2015). As research into these GI symptoms has expanded, mounting evidence suggests that they also contribute to the behavioral symptoms associated with ASD, a finding well-recognized even in patients without ASD and explained by the biopsychosocial model of disorders of gut-brain interaction (Klarer et al., 2014; Mayer et al., 2014; Drossman and Hasler, 2016; Sharon et al., 2019). With this in mind, it becomes apparent why the gut-brain-microbiome axis is a critical focal point for studying both the pathophysiology of ASD-related GI dysfunction and ASD as a whole.

      Addressing GI symptoms within neurological disorders is challenging because the regulation of GI function is complex and full of redundant feedback mechanisms involving multiple body systems (Holtmann and Talley, 2014). Adding to this complexity is the fact that the luminal space of the GI tract is technically “outside” of the body and not sterile, lending itself to microbial and chemical exposure which could influence regulatory mechanisms. Under normal conditions, communication between the GI tract and the CNS is modified by contributions from immune, microbial, hormonal, motor, and sensory inputs (Grundy et al., 2006; Vanner et al., 2016). The GI tract also exerts a large amount of autonomous control over its own functions, with the enteric nervous system (ENS) interfacing with various mechanosensory, chemosensory, endocrine, immune, and secretory cells, altering GI function as needed to deal with threats and maintain homeostasis (Holtmann and Talley, 2014). These typical functions may be altered in ASD (Hsiao, 2014), and recent findings from both clinical and rodent model studies have begun to frame the importance of the gut-brain-microbiome axis in ASD (Hsiao, 2014).

      Viewing autism as a disorder of the brain, without consideration of gut/microbiome can have unintended negative consequences; a prime example is the use of antipsychotics to reduce aggressive behaviors, since these also suppress GI motility and thus are likely to increase GI distress (de Alvarenga et al., 2017). In this review, we contend that the zebrafish presents unique opportunities to approach to autism research holistically. In particular zebrafish ASD models are amenable to genetic modification, in vivo visualization of multiple organ systems, and high-throughput studies, providing an ideal model system to address a multidisciplinary gut-brain-microbiome approach to ASD research (Brugman, 2016; Kozol et al., 2016; Phelps et al., 2017; Kozol, 2018; James et al., 2019).

      Gastrointestinal Issues and Their Link to Neurological Disorders

      Gastrointestinal distress is a pervasive co-occurring ailment in a wide range of neurological disorders, including Parkinson’s (Mulak and Bonaz, 2015; Liddle, 2018; Brudek, 2019), schizophrenia (Severance et al., 2015, 2016; Dickerson et al., 2017), and Alzheimer’s (Hill et al., 2014; Jiang et al., 2017; Kowalski and Mulak, 2019; Goyal et al., 2020; He et al., 2020). Only in the last 5 years has GI distress been more widely recognized as an ASD-related comorbidity, and the potential causes have been the subject of considerable and ongoing debate. Although a comprehensive discussion on the clinical prevalence and significance of GI distress in ASD is outside of the scope of this review, we believe reviewing a few critical points are helpful in framing the current state of zebrafish-based research as it relates to ASD and GI comorbidities.

      Broadly speaking, the link between psychological and gastrointestinal states has been acknowledged for centuries (Wolf, 1981), though this understanding has not been applied to neurodevelopmental disorders like ASD until recently. In fact, while research from the late 90s and early 2000s explored links between ASD and GI distress, no thorough categorization or treatment of ASD-related GI distress was attempted until 2010 (Buie et al., 2010). This interdisciplinary panel was unable to link a specific GI pathophysiology to individuals with ASD; nonetheless, they agreed that the prevalence of GI abnormalities was not completely understood, GI symptoms are frequently linked with negative behavioral manifestations, and that more research was required before coming to any definitive conclusions on evidence-based treatment recommendations. Current clinical research into the ASD-GI link is still hindered by many of the same obstacles that were identified over a decade ago: inconsistent or varying criteria used to define GI phenotypes, inconsistent or varying methodology (including differences in the reporting and measuring of GI phenotypes), and inconsistent criteria for patient participation and selection. This explains, in part, the wide variation in reported prevalence of ASD related GI symptoms, which ranges from 23% to 70% (Chaidez et al., 2014; McElhanon et al., 2014). Recent work has attempted to address these issues (Bresnahan et al., 2015). In a prospective population-based cohort study with well-defined methodology and participation criteria, Bresnahan et al. (2015) has shown that individuals with ASD are not only more likely to experience GI-related problems when compared to their typically developing counterparts, but that the type of GI distress varies with age. Encompassing a 10-year period, 95,278 mothers (with 114,516 children) from the Norwegian Mother and Child Cohort Study (MoBa) were recruited to participate, with “ongoing follow-up [including] health, behavioral, developmental, and nutritional questionnaires and collection of clinical and biological data” and maternal reports of GI symptoms. Additionally, by simplifying the categories of GI distress to only include constipation, food allergy, and diarrhea, the study focused on easily identifiable symptoms and limited the possibility of over or underreporting. This is a particularly important consideration when dealing with children who have communication deficits, or with non-verbal autistic individuals, irrespective of age. This study represents the first large-scale prospective cohort study on ASD-related GI symptoms that confirms GI distress existing at a higher rate within the ASD population. It also underscores the need for not only more GI-related ASD research, but for unified and consistent approaches to measuring GI distress (Margolis et al., 2019).

      In addition to prospective studies, severe GI symptoms have been reported in at least eighteen molecularly identified forms of ASD (Table 1), many of which have corresponding zebrafish and/or rodent models that exhibit reduced intestinal tract motility (Figure 2). Because many of these molecularly identified forms of ASD are rare, caused by sporadic de novo genomic changes, clinical needs of these individuals can often go unmet (SHANK3; Figure 2B). Interestingly, gene expression analyses have shown that many of these ASD-linked genes are expressed in the intestine in both mammals (Sauer et al., 2019) and zebrafish (Lavergne et al., 2020; Wen et al., 2020; Willms et al., 2020) raising the possibility that GI distress is caused by gut-intrinsic mechanisms. Because GI homeostasis is maintained through a concert of influence from the CNS, the microbiome, and the GI tract itself, studies focusing on how the three interact stand to provide the most comprehensive explanations for why GI distress is prevalent within ASD populations.

      Molecularly-defined forms of ASD with GI symptoms.

      Genetic locus Foundation: Reported GI distress Publications reporting GI distress case reportsCR
      ADNP ADNP Kids Research Foundation: GERD, reflux, cyclical vomiting, constipation, diarrhea, delayed digestion, stomach ulcers/scarring, IBS Van Dijck et al. (2019)
      CDKL5 International Foundation for CDKL5 Research: Abdominal distension, constipation, diarrhea, reflux, slow gastric emptying, low motility, risk of life-threatening volvulus and intussusception Amin et al. (2017)
      CHD8 SPARK: Gastrointestinal issues Bernier et al. (2014)
      CNTNAP2 Pitt Hopkins Research Foundation: Syndrome 1 constipation Gregor et al. (2011)
      Dup Chr 15q Dup 15 Q Alliance: Feeding issues in infancy, encopresis, acid reflux, some with G-tube Shaaya et al. (2015)
      FOXG1 International FOXG1 Foundation: Constipation McMahon et al. (2015)
      FOXP1 Siper et al., 2017 found that of 9 people with FOXP1 syndrome, 3 had feeding issues and 4 had constipation. Frohlich et al. (2016, 2019), Siper et al. (2017)
      KCNQ2 KCNQ2 Cure Alliance: GI issues seen commonly Inagaki et al. (2019)
      MECP2 Rett syndrome/Rett Syndrome Research Trust: 92% prevalence of GI dysmotility Motil et al. (2012)
      NRXN1 Pitt Hopkins Research Foundation: Syndrome 2 constipation, reflux Zweier et al. (2009); Harrison et al. (2011)
      PTEN PTEN Hamartoma Tumor Syndrome Foundation: Intestinal hamartomatous polyposis Shaco-Levy et al. (2017)
      SCN1A Dravet Syndrome Foundation: Constipation, dysmotility Villas et al. (2017)
      SCN2A Families SCN2A Foundation: Reflux and constipation Tian et al. (2019)
      SHANK3 Phelan McDermid Syndrome Foundation: Constipation, reflux, some with G-tube De Rubeis et al. (2018)
      SYNGAP1 Bridge the Gap SYNGAP1 ERF: Constipation, reflux, links btn GI and aggression, some with G-tube. Parker et al. (2015); Prchalova et al. (2017)
      TCF4 Pitt Hopkins Research Foundation: Gastrointestinal issues Peippo and Ignatius (2012)
      TSC 1 and 2 Tuberous Sclerosis Alliance: Rectal bleeding, papillomas in GI tract, constipation Moulis et al. (1992)
      UBE3A Angelman Syndrome Foundation Inc.: Constipation/possibly due to low truncal tone, reflux/gagging Williams et al. (2010)

      Human genetics has identified 100s of sporadic, de novo genetic changes that can cause ASD; shown are a subset of these that report GI distress as a major symptom. (A) The Venn diagram shows genes linked to GI distress in ASD in the orange circle, those which have extant zebrafish models in the blue circle, and those in which reduced GI motility has been reported in an animal model. (B) The map shows where families caring for individuals with Phelan McDermid Syndrome are scattered across the globe making a standard of care challenging. This Google map image was generated by the Phelan McDermid Syndrome Foundation and is reproduced above with their permission.

      The Role of the CNS in the Gut-Brain-Microbiome Axis

      Gastrointestinal function is regulated by crosstalk between the nervous system, the gut, and the microbiome (Stengel and Tache, 2010; Drossman and Hasler, 2016; Zhao and Pack, 2017; Ganz, 2018) and, as such, disruptions to this cross talk can contribute not only to GI distress (Bielefeldt et al., 2016) but also to core behaviors used to diagnose ASD (Chaidez et al., 2014; McCue et al., 2017; Penzol et al., 2019). The brain tracks gut luminal contents via sensory enteroendocrine cells (EECs) scattered throughout the gut lining. EECs signal using hormones like serotonin and cholecystokinin (CCK) released into the bloodstream; EECS also use both hormones and fast-acting neurotransmitters to regulate activity of the gut-intrinsic ENS and the gut-extrinsic the parasympathetic vagus and sympathetic dorsal root neurons. These nerves provide a physical, fast-acting conduit that modifies activity across the CNS (Bohorquez et al., 2015; Bellono et al., 2017; Kaelberer and Bohorquez, 2018). Therefore, visceral stimuli influence not only visceral function via gut and brainstem reflexes but also homeostasis, reward, affect, and executive function (Kaelberer et al., 2020). While genes linked to ASD have been extensively studied for their roles in brain and behavior (Kozol et al., 2016), their function along the gut-brain axis has received much less attention. Underscoring the importance of visceral signals, recent studies in zebrafish have been able to accurately predict behavior sequences by integrating environmental stimuli and internal state (Johnson et al., 2020; Marques et al., 2020). Below we discuss the brain regions most relevant to the Gut-Brain axis; we also describe opportunities in zebrafish to better understand the gut-brain axis as it relates to symptoms in ASD.

      For studies of the gut-brain axis, visceral sensory and motor pathways in diverse taxa are marked by their expression of the Paired-like homeodomain Phox2b transcription factor (Pattyn et al., 1999; Bertucci and Arendt, 2013; Nomaksteinsky et al., 2013; Harrison et al., 2014). When Phox2b function is disrupted in rodents, motor neurons that would normally innervate the viscera, find muscle targets, indicating that Phox2b functions to make specific CNS nuclei attend to the viscera (D’Autreaux et al., 2011). While this marker is conserved, one pronounced difference between mammals and zebrafish is that zebrafish and their relatives taste with sensory cells on their skin and lips and, as such, the first CNS relay for visceral sensations, the solitary tract nucleus (nTS), is lobed to accommodate expanded vagal, glossopharyngeal and facial inputs; nonetheless these lobes are thought to be functionally homologous to the gustatory portion of the nTS in mammals (Coppola et al., 2012). Work using tract tracing in zebrafish has helped to map the connectivity of largely conserved fish visceral brain circuits (Yanez et al., 2017).

      Setting the Stage

      Even in advance of eating, sensations of external food stimuli as well as internal hunger or satiation states activate hypothalamic nuclei and play a highly conserved role in setting the stage (Sternson and Eiselt, 2017). Indeed hormonally regulated states of hunger, motivation to eat, satiety are similar in zebrafish and mammals (Jordi et al., 2015), though metabolic differences exist in leptin signaling associated with mammals being endotherms and fish being ectotherms (Gorissen and Flik, 2014). The ability to query the involvement of brain-wide circuits in zebrafish has been used to link behavioral states to brain activity (Randlett et al., 2015; Vanwalleghem et al., 2018). For example, seeing paramecia, a favored food of larval zebrafish, is sufficient to activate neural activity in the hypothalamus (Muto et al., 2017). Moreover, the transition between hunger and satiety can be mapped to activity in the ventromedial hypothalamus and lateral hypothalamus, respectively (Wee et al., 2019). In addition to hypothalamus, brainstem nuclei also respond to appetitive smell and taste in both fish and mammals (Vendrell-Llopis and Yaksi, 2015; Vincis and Fontanini, 2019) and sensorimotor integration during prey pursuit in zebrafish is modulated by feeding state (Filosa et al., 2016; Henriques et al., 2019). Due to the prevalence of eating disorders and sensory symptoms in ASD, an imbalance in sympathetic/parasympathetic tone is one of the hypotheses put forward to potentially explain these symptoms (Fenning et al., 2019). Currently, the physiological basis/es for eating difficulties in individuals with ASD is not well understood and is plagued by heterogeneity both in study design and how symptoms manifest across the spectrum (Margari et al., 2020). Recent studies show that while children with ASD are generally pickier about their food than neurotypical children (Babinska et al., 2020; Li C. et al., 2020), other symptoms may be unique to specific genetic forms of ASD. For example, in people with SYNGAP1 mutations, there is a correlation between eating and seizures (Vlaskamp et al., 2019).

      Gut-Brain Connectivity

      Innervating the gut, parasympathetic and sympathetic neurons link directly to the CNS and convey information about digestive and microbiome status as well as mechanical and/or chemical insult (Browning and Travagli, 2014; Niu et al., 2020). Vagus and sympathetic nerves have both sensory/afferent and motor/efferent components that carry out visceral reflexes as well as integrating and conveying information to and from widespread brain regions across the CNS.

      Most of the recent gut-brain axis literature has focused on the vagus nerve. The cell bodies of the motor component of the vagal neurons reside in dorsal motor nucleus (DMV) in the caudal brainstem. Motor innervation of the viscera is denser in the anterior GI tract (esophagus, stomach, and proximal small intestine) and activity in these organs tends to promote regulation of GI secretions and motility appropriate to the phase of digestion (Tache et al., 2006; Browning et al., 2017). In zebrafish, islet1:GFP transgenics label all the cranial motor neurons including the vagal motor nucleus (Higashijima et al., 2000). The DMV is functionally distributed from rostral to caudal, with the neurons innervating the viscera enriched caudally (Barsh et al., 2017; Isabella et al., 2020). Sensory vagus neuron cell bodies reside outside the CNS in the Nodose ganglion, therefore, it is relatively straight-forward to monitor neuronal activity in these cells to identify salient gut stimuli (Bai et al., 2019; Tsang et al., 2020; Zhang W. et al., 2020) and this approach that has recently been used in zebrafish (Ye et al., 2020). Work in rodents supports a critical role for an intact vagus nerve in the ability of L. reuteri bacteria to rescue social deficits in a Shank3 ASD mouse model (Sgritta et al., 2019).

      Sympathetic pre-ganglionic neurons when active during stress generally inhibit GI motility and secretion and also causes vasoconstriction that limits the blood supply to the viscera (Browning et al., 2017). Sensory sympathetic spinal afferents whose cell bodies reside in the dorsal root ganglia (DRG) also innervate the gut with denser innervation caudally (Muller et al., 2020). Sympathetic neurons are sensitive to digestion, injury, and microbes. While sympathetic innervation as it relates to digestion has not to our knowledge been studied in zebrafish, the DRG is accessible to electrophysiological recordings (Won et al., 2012) and both isl2b and ngn enhancers can drive expression of calcium sensors/light-gated channels in this cell type (Wright et al., 2010; Stil and Drapeau, 2016; Hall and Tropepe, 2018). Using these tools in zebrafish larvae could help elucidate GI stimuli and insults that activate sympathetic spinal afferents in vivo and how this activity is impacted zebrafish ASD models.

      The brainstem/medulla oblongata is rich in nuclei that receive, process, and respond to sensory information from the GI tract. Vagal inputs directly innervate the Area Postrema (AP) and the Nucleus of the Solitary Tract (nTS) (Ma, 1997; Kaslin and Panula, 2001; McLean and Fetcho, 2004; Coppola et al., 2012). The AP is one of the few areas of the CNS that is not protected by the blood brain barrier and as such is responsive to factors/toxins in the bloodstream; neuronal activity in the AP is linked to the symptom of nausea (Zhang C. et al., 2020). Consistent with functions established in mammals, the zebrafish AP has been shown to be responsive to the pain-inducing Trp1A agonist AITC (Haney et al., 2020). The nTS serves as the first CNS relay to many other brain regions (Coppola et al., 2012; Yanez et al., 2017; Han et al., 2018) including the secondary gustatory nucleus aka parabrachial nucleus (PBN) as well as the DMV. Both nTS and PBN are marked by Phox2b expression with transgenic drivers available (Nechiporuk et al., 2007; Coppola et al., 2012). The zebrafish nTS is dorsal and sheetlike and, as such, is amenable to in vivo imaging studies (Vendrell-Llopis and Yaksi, 2015). Taste and visceral inputs map to different regions of the nTS in mammals (Vincis and Fontanini, 2019; Kaelberer et al., 2020) and in fishes, including zebrafish, visceral inputs map to the caudal part of the nTS in the adult brain (Kermen et al., 2013; Yanez et al., 2017). As a nucleus that integrates direct inputs from both viscera and CNS, the nTS holds promise for elucidating what aspects of the gut-microbiome-brain signaling may be altered in zebrafish ASD models.

      Gut Feelings

      In addition to visceral reflexes mediated at the level of hypothalamus and brainstem, widespread CNS nuclei mediating memory, emotion/affect, and motivation have been shown in rodents to also be responsive to gut stimuli (Kaelberer et al., 2020). Severing vagal afferents results in increased exploratory behaviors and risk-taking, heightened auditory-based fear conditioning, and altered neurotransmitters in the limbic system (Klarer et al., 2014, 2018). Stimulation of vagal afferents entering the brainstem on the right side engage a PBN to nucleus accumbens to dorsal striatum reward pathway and stimulating this pathway sufficient to elicit behaviors consistent with reward (Han et al., 2018). Another pathway activated through the vagus is the nTS to medial septum to hippocampus that when disrupted interferes with spatial memory (Suarez et al., 2018). Analogous zebrafish brain regions to those mediating memory, emotion/affect, and motivation in mammals are continuing to be elucidated in zebrafish, and anatomical studies indicate similar connectivity between visceral circuits and these brain regions in zebrafish (Yanez et al., 2017).

      Elucidating the link between GI distress and negative behavioral symptoms could improve symptom management. Not only are GI symptoms common in ASD, but they correlate with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances (De Rubeis and Buxbaum, 2015; McCue et al., 2017; Penzol et al., 2019). Such an intimate link between gut and brain symptoms is well-established in Parkinson’s disease where constipation often precedes the motor disturbances (Fasano et al., 2015; Mayer et al., 2015; Liddle, 2018; Ramprasad et al., 2018). The possibility that gut symptoms could contribute to the development of neurological symptoms has also been suggested in ASD (Mayer et al., 2014; Eshraghi et al., 2018) with recent studies providing empirical support (Sgritta et al., 2019).

      Zebrafish as a Model for Microbial Studies and Their Potential Role in ASD

      Humans are extensively colonized with microbial species, resulting in several distinct microbiomes determined by geographic distribution across the host’s body (Human Microbiome Project Consortium, 2012). Interactions between host and microbiome are complex, and our understanding of the bi-directional influence between the two is evolving as the scientific community adopts a less human-centric view (reviewed in Wiles and Guillemin, 2020). Nonetheless, the microbiome has long been understood to play an important role in host form and function. While the GI microbiome was traditionally thought to predominately interact with its host through nutrient processing, further study has shown that it is capable of influencing the host immune system and nervous system as well, and thus has direct implications in disorders like ASD.

      The composition of the human GI microbiome is largely determined by functional, rather than taxonomic, qualification. The gut microbiome does not need any particular species profile to operate and maintain a commensal relationship with the host. Rather, it requires certain functions to be performed, which can be executed by any number of potential microbial species. In humans, the microbiome is composed of predominantly Firmicutes and Bacteroidetes species (Human Microbiome Project Consortium, 2012). Much like an ecosystem of macroorganisms, the human GI microbiome is influenced by its physical habitat (gut morphology), resource availability (host diet), and interspecies interaction (both between microorganisms and between the microbiome and host itself). Likewise, both the development and the function of the vertebrate immune and nervous system are affected by the GI microbiome. The gut microbiome is capable of exerting an effect on neurological functioning through several pathways, with metabolites able to travel through the host bloodstream or act locally upon the vagus (Schroeder and Backhed, 2016; Fulling et al., 2019). Immune responses elicited by microbes or their metabolites can also have implications on the brain and its function.

      The GI microbiome also plays an important role in the development of the host immune system. Early-colonizing microbial species provide “training” to immune effectors, allowing them to become accustomed to commensal communities and to distinguish between them and pathogenic microorganisms. Severe negative consequences can occur when this process is interrupted or prevented. In germ-free mice, colonic epithelial cells are incapable of raising an immune response upon exposure to a bacterial pathogen (Lundin et al., 2008). Similar dysfunction can be seen in germ-free zebrafish, which display impaired differentiation of GI cell types such as goblet and enteroendocrine cells along with impaired nutrient uptake and death prior to adulthood if not conventionalized (Bates et al., 2006; Melancon et al., 2017). Human infants that avoid exposure to maternal microbiomes through cesarean delivery and/or formula feeding display increased inflammatory responses and autoimmune disorders (Toscano et al., 2017; Koch et al., 2018). As the microbiome shapes the immune system, the innate immune system of the host in turn shapes the native microbiome to one tailored to the individual’s metabolic needs (Thaiss et al., 2016).

      The microbiome has been shown to be capable of affecting or inducing multiple aberrant neurological phenotypes in various study systems. Some of these alterations have been traced to bacterial metabolites such as short chain fatty acids (SCFAs). Elevated levels of SCFAs have been directly detected in fecal samples from autistic patients (Wang et al., 2012). Although it was undetermined if those levels were mediated by the gut microbiome, other studies have likewise shown increased numbers of the Clostridia family (enterobacteria that are key producers of various SCFAs) in stool samples from individuals with autism. Studies in rats have recapitulated a behavioral phenotype resembling that of autistic patients by treatment with propionic acid, a short-chain fatty acid produced by Clostridia (MacFabe et al., 2007). Similar associations have been found in models of Parkinson’s disease, where bacterial SCFAs were sufficient to promote neuroinflammation in the mouse subjects (Sampson et al., 2016). The microbiome has also been shown to influence neurological conditions through modulation of the immune system (Benakis et al., 2016; Schroeder and Backhed, 2016). Microbial attenuation of inflammatory cytokines has been linked with reductions in anxiety (Cryan and O’Mahony, 2011) and antibiotic treatment in a stroke mouse model has been shown to confer neuroprotection post-ischemic injury through a reduction in intestinal immune effectors (Benakis et al., 2016). In addition to influencing immune activity, microbes in the gut are capable of altering hormone signaling as well. Spore-forming bacterial species in the gut have been shown to induce serotonin production by enterochromaffin cells through the release of several metabolites. This promotion of serotonin production was found to ameliorate the reduced GI motility seen in germ-free mice when the subjects were colonized with the spore-forming species (Yano et al., 2015).

      Zebrafish are powerful model organisms for experiments involving microbiome contribution. As they are initially colonized by microbes via their environment, it is possible to raise them in sterilized conditions that result in germ-free individuals (Rawls et al., 2004). Once germ-free subjects are generated, experiments involving selective colonization, introduction of metabolites, and conventionalization effects are possible. The zebrafish gut is able to be imaged in vivo in the early life stages due to the optical transparency of larvae. This allows for examination of gut function like motility, and barrier function (Marjoram et al., 2015), as well as location and interspecies dynamics of fluorescently labeled bacterial species (Wiles and Guillemin, 2020). The gut is also easily dissectible, allowing for extraction of the microbiome for 16S sequencing.

      Zebrafish as a Model for GI Form and Function, and Modeling ASD-Related GI Dysfunction

      The use of zebrafish models for GI research has increased considerably over the last three decades (Figure 1), with publications exploring conserved and unique aspects of GI form and function, as well as more nuanced topics including specific disease models (reviewed in Zhao and Pack, 2017) and external impacts like microplastic exposure (Qiao et al., 2019) and chemotherapy treatment (Van Sebille et al., 2019). Like the animal model as a whole, the zebrafish GI system has many physiological similarities and differences with its mammalian model counterparts. There is conservation of key GI cell types in the zebrafish GI tract, with absorptive enterocytes, mucus producing goblet cells, chemo/mechano-sensitive enteroendocrine cells, and the innervation by the ENS (Roy-Carson et al., 2017) filling similar functional niches. The digestive tract and its accessory organs similarly form from a strip of endodermal tissue in early development (as early as 21 hpf in zebrafish) (Wallace and Pack, 2003). While there is some debate as to whether these organs develop individually or from the same interconnected endodermal strip (Ng et al., 2005), the differential expression of conserved genes key to GI development begins as early as 18hpf. Expression of these orthologs, such as pharyngeal endoderm associated gene axial, liver development gene hhex, pancreas development gene pdx, and esophageal gene gata-6, suggest that GI development in zebrafish differs slightly from mammals, with progenitors for the liver, pancreas, and pharynx existing before morphogenesis of the GI tract itself is complete. Similarly, small differences exist for the roles of morphogens like sonic-hedgehog (shh); required as a negative regulator for pancreatic development in mammals, in zebrafish it appears to be a positive regulator (Wallace and Pack, 2003). Like in mammals, the zebrafish GI tract has distinct functional layers, with an epithelial mucosal layer, and an underlying muscular layer innervated by the ENS. Unlike mammals, however, zebrafish lack a submucosal layer, villi are replaced by broad folds in the mucosal layer, the ENS is not organized into ganglia (acting instead as a nerve net), and the proliferative crypts of Lieberkuhn are absent (though proliferating cells still expand from stem cell niches at the base of the mucosal folds) (Wallace and Pack, 2003; Ng et al., 2005; Wallace et al., 2005; Uyttebroek et al., 2010). From a functional perspective, the zebrafish also has other simplifications when compared to mammalian models; they lack a true stomach (separated by sphincters and containing acid-producing Paneth cells) and instead have an intestinal bulb. This bulb likely acts as a reservoir for food, and motility patterns in this region are both anterograde and retrograde, acting to mix and break food down mechanically (Holmberg et al., 2004). These and other differences point to an overall simplification of the GI tract in zebrafish. Although components of the GI tract (including development, cell types, and molecular signaling) are conserved between zebrafish and mammals, there are important differences that need to be acknowledged when using zebrafish as a model for GI research.

      From a GI-research prospective, zebrafish offer a key advantage over mammalian models: their external fertilization, development, and early transparency make studying GI function in vivo significantly easier. Measurements of digestive transit, peristaltic rate, and general ontogeny of GI motility can be made before the larvae begin feeding (with spontaneous motility developing before 5 dpf) (Holmberg et al., 2004), and do not require any complex or potentially variable-confounding surgical procedures. The measurement of motility in zebrafish also has its disadvantages; since this is a relatively new branch of zebrafish research, the approaches have not been standardized, with multiple labs (including our own) creating their own software for measurements of motility and transit (Field et al., 2009; Rich, 2009; Jordi et al., 2015; James et al., 2019). Although these different models share similar components and aims, the differences could present possible complications when comparing results. For instance, in our own model, while measuring transit and motility are relatively straightforward, determining the force of muscular contraction is difficult, and potentially confounding variables (such as food particles in the GI tract) mean that measuring GI motility specifically (and excluding the movement of particulates) becomes difficult. Additionally, as most motility software was developed for in-house use, the user-interface and technical aspects of each model present possible speedbumps for researchers unfamiliar with the software. The field, as a whole, would benefit from a unified method for GI motility measurement, especially when attempting to tackle questions on ASD-related GI distress.

      While there is increasing interest in zebrafish-based GI research, and similarly, increasing interest in the relationship between ASD and GI dysfunction in non-zebrafish models (Figure 1), there has not been a coupling of the two. In fact, to our knowledge and excluding our own work, there have only been three publications that include data on ASD-related GI symptoms using zebrafish models, one of which is technically not ASD-specific (focusing on CHARGE syndrome, which has overlap with ASD but is distinct) (Bernier et al., 2014; van der Vaart et al., 2017; Cloney et al., 2018). This represents, in our view, a significant shortcoming that should be addressed in future studies. Previous work from our lab (James et al., 2019) attempts to address this shortcoming, and utilizes some of the aforementioned zebrafish GI assays to look at GI dysfunction in a monogenic ASD model. In this work, we focus on GI dysmotility found in CRISPR mutant of ASD related gene shank3ab. We found that while there was no difference in enteric neuron count, there was a significant decrease in the expression of serotonin-positive enteroendocrine cells in shank3ab mutants. We also note that RNA-seq data from a collaborating lab has found that shank3ab expression is detected in this population of cells (Wen et al., 2020). Interestingly, recent work in mouse models has found that enteroendocrine cells (specifically serotonin producing enterochromaffin cells) synapse directly with the ENS (Bellono et al., 2017). Taken together, this suggests that changes in GI physiology can have profound impacts on GI-CNS communication, and that there may be a non-CNS role for genes like shank3ab, which are largely understood and studied through their context in the CNS. To add further complexity to the picture, we also found increased goblet cell populations when comparing adult WT and shank3ab mutant fish, a difference not present in larval fish and indicative of possible age-related GI inflammation; we are currently exploring the microbial implications behind this finding. This work, coupled with the previously mentioned ASD-GI publications presents possible venues for establishing ASD-related GI pathophysiology, and it sets a foundation for future studies.

      Discussion: Drawing Conclusion and Looking Forward

      In this review, we have discussed some of the important research in the gut-brain-microbiome field, as well as presented the zebrafish as an ideal model for future multidisciplinary ASD studies. Moving forward, we hope research in zebrafish models increasingly integrates behavioral phenotypes and comorbidities of sleep, seizure, and GI function to obtain a more complete understanding of how genetic changes that can cause ASD impact the organism as a whole. To this end, there have been recent advances in the development of social assays that have helped characterize the neural circuits involved in social behavior (Dreosti et al., 2015; Stednitz et al., 2018). Additionally, adult social behaviors in a zebrafish ASD model have reduced shoaling behavior (Liu et al., 2018). While the bulk of current zebrafish ASD models are caused by indels that result in premature stop codons, recently developed CRISPR/Cas9 technologies in zebrafish are making tissue-specific mutagenesis and knockins that replicate patient-specific mis-sense mutations more broadly feasible (Albadri et al., 2017; Li J. et al., 2020). These technological advances continue to make the zebrafish an increasingly valuable model for ASD research.

      It is also important to briefly highlight the role zebrafish are playing in high-throughput drug screening and drug discovery for treating ASD comorbidities. The zebrafish is becoming a well-established model for drug screening (Haesemeyer and Schier, 2015; Hoffman et al., 2016; Cassar et al., 2020), and is a particularly powerful model for high-throughput screens aimed at tailoring integrative care on a patient-symptom basis. The broad heterogeneity within ASD warrants an equally broad scope of research on different palliative drugs. It should be noted, however, that this heterogeneity also complicates the treatment of comorbidities along with the core behavioral phenotypes associated with ASD. Many current drugs are aimed at treating behavioral problems such as irritability and aggression (Stachnik and Gabay, 2010; Coleman et al., 2019), and in doing so frequently overlook downstream side-effects that might also be contributing to the initial behavioral issue. Risperidone, for example, is often used to treat problematic behavioral issues associated with ASD by inhibiting dopaminergic D2 receptors and serotonergic 5-HT2A receptors and can lead to constipation in human patients, which can in turn lead to a worsening of non-verbal behaviors such as agitation and anxiety. Similarly, common GI medications used to treat delays in gut transit (such as Metoclopramide) can lead to changes in behavior in zebrafish due to a compensatory mechanism following weakened dopamine signaling (Shontz et al., 2018). To further complicate the issue, the relationship between the GI microbiome and drug application is not well understood. As such, we believe the zebrafish also serves as an ideal model for ASD drug screening, not only for behavioral impacts, but for GI and microbiome impacts as well (Cassar et al., 2015). As their power in translational ASD research is already well established (Ijaz and Hoffman, 2016; Sakai et al., 2018), zebrafish could serve as an intersection between patient care and foundational exploratory research, with pre-clinical trials of newly discovered drugs helping to inform which treatments have the best benefit for multiple symptoms.

      Autism spectrum disorder research has largely been compartmentalized, whether into behavioral, molecular, or microbial aspects. Given the interconnected regulatory pathways and feedback loops existing between the CNS, GI tract, and microbiome, we believe this compartmentalization acts to the detriment of a broader understanding of the disorder. Consequently, if the current lack of ASD-related GI research is filled, it could stand to provide critical components to both CNS and microbiome research, while also producing important foundational information on potential ASD-related GI pathophysiology.

      Author Contributions

      All authors contributed to the research, writing, and editing of this review. DJ and JD conceived the scope of the review, coordinated efforts among authors, and wrote the gastrointestinal and CNS sections. ED wrote the bulk of the microbiome section. JY wrote the bulk of the drug screening section. BM aided in research and references to clinical studies.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This work was supported by grants from the National Institutes of Health, NICHD R21HD093021 to JD and BM, and from the Simon’s Foundation, SFARI Pilot Award 719401 to JD.

      We would like to thank members (clinicians, researchers, and family members) of both the Phelan McDermid Syndrome Foundation and the Bridge the Gap SYNGAP Education and Research Foundation for their enthusiasm and support of our ongoing ASD-GI Research.

      References Albadri S. De Santis F. Di Donato V. Del Bene F. (2017). “CRISPR/Cas9-Mediated knockin and knockout in zebrafish,” in Genome Editing in Neurosciences, eds Jaenisch R. Zhang F. Gage F. (Cham: Springer), 4149. Amin S. Majumdar A. Mallick A. A. Patel J. Scatchard R. Partridge C. A. (2017). Caregiver’s perception of epilepsy treatment, quality of life and comorbidities in an international cohort of CDKL5 patients. Hippokratia 21 130135. Babinska K. Celusakova H. Belica I. Szapuova Z. Waczulikova I. Nemcsicsova D. (2020). Gastrointestinal symptoms and feeding problems and their associations with dietary interventions, food supplement use, and behavioral characteristics in a sample of children and adolescents with autism spectrum disorders. Int. J. Environ. Res. Public Health 17:6372. 10.3390/ijerph17176372 32882981 Bai L. Mesgarzadeh S. Ramesh K. S. Huey E. L. Liu Y. Gray L. A. (2019). Genetic identification of vagal sensory neurons that control feeding. Cell 179 1129.e231143.e23. 10.1016/j.cell.2019.10.031 31730854 Barsh G. R. Isabella A. J. Moens C. B. (2017). Vagus motor neuron topographic map determined by parallel mechanisms of hox5 expression and time of axon initiation. Curr. Biol. 27 3812.e33825.e3. 10.1016/j.cub.2017.11.022 29225029 Bates J. M. Mittge E. Kuhlman J. Baden K. N. Cheesman S. E. Guillemin K. (2006). Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297 374386. 10.1016/j.ydbio.2006.05.006 16781702 Bellono N. W. Bayrer J. R. Leitch D. B. Castro J. Zhang C. O’Donnell T. A. (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170 185.e16198.e16. 10.1016/j.cell.2017.05.034 28648659 Benakis C. Brea D. Caballero S. Faraco G. Moore J. Murphy M. (2016). Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22 516523. 10.1038/nm.4068 27019327 Bernier R. Golzio C. Xiong B. Stessman H. A. Coe B. P. Penn O. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158 263276. 10.1016/j.cell.2014.06.017 24998929 Bertucci P. Arendt D. (2013). Somatic and visceral nervous systems - an ancient duality. BMC Biol. 11:54. 10.1186/1741-7007-11-54 23631570 Bielefeldt K. Tuteja A. Nusrat S. (2016). Disorders of gastrointestinal hypomotility. F1000Res. 5:F1000FacultyRev-1897. 10.12688/f1000research.8658.1 27583135 Bohorquez D. V. Shahid R. A. Erdmann A. Kreger A. M. Wang Y. Calakos N. (2015). Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125 782786. 10.1172/JCI78361 25555217 Bresnahan M. Hornig M. Schultz A. F. Gunnes N. Hirtz D. Lie K. K. (2015). Association of maternal report of infant and toddler gastrointestinal symptoms with autism: evidence from a prospective birth cohort. JAMA Psychiatry 72 466474. 10.1001/jamapsychiatry.2014.3034 25806498 Browning K. N. Travagli R. A. (2014). Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4 13391368. 10.1002/cphy.c130055 25428846 Browning K. N. Verheijden S. Boeckxstaens G. E. (2017). The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 152 730744. 10.1053/j.gastro.2016.10.046 27988382 Brudek T. (2019). Inflammatory bowel diseases and Parkinson’s Disease. J. Parkinsons Dis. 9 (Suppl. 2), S331S344. 10.3233/JPD-191729 31609699 Brugman S. (2016). The zebrafish as a model to study intestinal inflammation. Dev. Comp. Immunol. 64 8292. 10.1016/j.dci.2016.02.020 26902932 Buie T. Campbell D. B. Fuchs G. J. III Furuta G. T. Levy J. Vandewater J. (2010). Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 125 (Suppl. 1), S1S18. 10.1542/peds.2009-1878C 20048083 Cassar S. Adatto I. Freeman J. L. Gamse J. T. Iturria I. Lawrence C. (2020). Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol. 33 95118. 10.1021/acs.chemrestox.9b00335 31625720 Cassar S. Huang X. Cole T. (2015). A high-throughput method for predicting drug effects on gut transit time using larval zebrafish. J. Pharmacol. Toxicol. Methods 76 7275. 10.1016/j.vascn.2015.08.156 26311656 Chaidez V. Hansen R. L. Hertz-Picciotto I. (2014). Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 44 11171127. 10.1007/s10803-013-1973-x 24193577 Chaste P. Leboyer M. (2012). Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin. Neurosci. 14 281292. Christensen D. L. Braun K. V. N. Baio J. Bilder D. Charles J. Constantino J. N. (2018). Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 Sites. United States, 2012. MMWR Surveill. Summ. 65 123. 10.15585/mmwr.ss6513a1 30439868 Cloney K. Steele S. L. Stoyek M. R. Croll R. P. Smith F. M. Prykhozhij S. V. (2018). Etiology and functional validation of gastrointestinal motility dysfunction in a zebrafish model of CHARGE syndrome. FEBS J. 285 21252140. 10.1111/febs.14473 29660852 Coleman D. M. Adams J. B. Anderson A. L. Frye R. E. (2019). Rating of the effectiveness of 26 psychiatric and seizure medications for autism spectrum disorder: results of a national survey. J. Child Adolesc. Psychopharmacol. 29 107123. 10.1089/cap.2018.0121 30724573 Coppola E. D’Autreaux F. Nomaksteinsky M. Brunet J. F. (2012). Phox2b expression in the taste centers of fish. J. Comp. Neurol. 520 36333649. 10.1002/cne.23117 22473338 Cryan J. F. O’Mahony S. M. (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil. 23 187192. 10.1111/j.1365-2982.2010.01664.x 21303428 D’Autreaux F. Coppola E. Hirsch M. R. Birchmeier C. Brunet J. F. (2011). Homeoprotein Phox2b commands a somatic-to-visceral switch in cranial sensory pathways. Proc. Natl. Acad. Sci. U.S.A. 108 2001820023. 10.1073/pnas.1110416108 22128334 de Alvarenga K. A. F. Sacramento E. K. Rosa D. V. Souza B. R. de Rezende V. B. Romano-Silva M. A. (2017). Effects of antipsychotics on intestinal motility in zebrafish larvae. Neurogastroenterol. Motil. 29:e13006. 10.1111/nmo.13006 27981679 De Rubeis S. Buxbaum J. D. (2015). Recent advances in the genetics of autism spectrum disorder. Curr. Neurol. Neurosci. Rep. 15:36. 10.1007/s11910-015-0553-1 25946996 De Rubeis S. Siper P. M. Durkin A. Weissman J. Muratet F. Halpern D. (2018). Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol. Autism 9:31. 10.1186/s13229-018-0205-9 29719671 Dickerson F. Severance E. Yolken R. (2017). The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav. Immun. 62 4652. 10.1016/j.bbi.2016.12.010 28003152 Dreosti E. Lopes G. Kampff A. R. Wilson S. W. (2015). Development of social behavior in young zebrafish. Front. Neural Circuits 9:39. 10.3389/fncir.2015.00039 26347614 Drossman D. A. Hasler W. L. (2016). Rome IV-Functional GI disorders: disorders of gut-brain interaction. Gastroenterology 150 12571261. 10.1053/j.gastro.2016.03.035 27147121 Eshraghi R. S. Deth R. C. Mittal R. Aranke M. Kay S. S. Moshiree B. (2018). Early disruption of the microbiome leading to decreased antioxidant capacity and epigenetic changes: implications for the rise in autism. Front. Cell Neurosci. 12:256. 10.3389/fncel.2018.00256 30158857 Fasano A. Visanji N. P. Liu L. W. Lang A. E. Pfeiffer R. F. (2015). Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 14 625639. 10.1016/S1474-4422(15)00007-1 Fenning R. M. Erath S. A. Baker J. K. Messinger D. S. Moffitt J. Baucom B. R. (2019). Sympathetic-parasympathetic interaction and externalizing problems in children with autism spectrum disorder. Autism Res. 12 18051816. 10.1002/aur.2187 31397547 Field H. A. Kelley K. A. Martell L. Goldstein A. M. Serluca F. C. (2009). Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish. Neurogastroenterol. Motil. 21 304312. 10.1111/j.1365-2982.2008.01234.x 19140958 Filosa A. Barker A. J. Dal Maschio M. Baier H. (2016). Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. Neuron 90 596608. 10.1016/j.neuron.2016.03.014 27146269 Frohlich E. E. Farzi A. Mayerhofer R. Reichmann F. Jacan A. Wagner B. (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav. Immun. 56 140155. 10.1016/j.bbi.2016.02.020 26923630 Frohlich H. Kollmeyer M. L. Linz V. C. Stuhlinger M. Groneberg D. Reigl A. (2019). Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1 (+/-) mice. Proc. Natl. Acad. Sci. U.S.A. 116 2223722245. 10.1073/pnas.1911429116 31611379 Frye R. E. Rose S. Slattery J. MacFabe D. F. (2015). Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb. Ecol. Health Dis. 26:27458. 10.3402/mehd.v26.27458 25956238 Fulling C. Dinan T. G. Cryan J. F. (2019). Gut microbe to brain signaling: what happens in vagus. Neuron 101 9981002. 10.1016/j.neuron.2019.02.008 30897366 Ganz J. (2018). Gut feelings: studying enteric nervous system development, function, and disease in the zebrafish model system. Dev. Dyn. 247 268278. 10.1002/dvdy.24597 28975691 Geschwind D. H. (2009). Advances in autism. Annu. Rev. Med. 60 367380. 10.1146/annurev.med.60.053107.121225 19630577 Goodspeed K. Bliss G. Linnehan D. (2020). Bringing everyone to the table - findings from the 2018 phelan-mcdermid syndrome foundation international conference. Orphanet. J. Rare Dis. 15:152. 10.1186/s13023-020-01389-6 32546186 Gorissen M. Flik G. (2014). Leptin in teleostean fish, towards the origins of leptin physiology. J. Chem. Neuroanat. 61-62 200206. 10.1016/j.jchemneu.2014.06.005 24977940 Goyal D. Ali S. A. Singh R. K. (2020). Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 106:110112. 10.1016/j.pnpbp.2020.110112 32949638 Gregor A. Albrecht B. Bader I. Bijlsma E. K. Ekici A. B. Engels H. (2011). Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Med. Genet. 12:106. 10.1186/1471-2350-12-106 21827697 Grundy D. Al-Chaer E. D. Aziz Q. Collins S. M. Ke M. Tache Y. (2006). Fundamentals of neurogastroenterology: basic science. Gastroenterology 130 13911411. 10.1053/j.gastro.2005.11.060 16678554 Haesemeyer M. Schier A. F. (2015). The study of psychiatric disease genes and drugs in zebrafish. Curr. Opin. Neurobiol. 30 122130. 10.1016/j.conb.2014.12.002 25523356 Hall Z. J. Tropepe V. (2018). Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish. eLife 7:e31045. 10.7554/eLife.31045 29528285 Han W. Tellez L. A. Perkins M. H. Perez I. O. Qu T. Ferreira J. (2018). A neural circuit for gut-induced reward. Cell 175 887888. 10.1016/j.cell.2018.10.018 30340046 Haney W. A. Moussaoui B. Strother J. A. (2020). Prolonged exposure to stressors suppresses exploratory behavior in zebrafish larvae. J. Exp. Biol. 223(Pt 22):jeb224964. 10.1242/jeb.224964 33106298 Harrison C. Wabbersen T. Shepherd I. T. (2014). In vivo visualization of the development of the enteric nervous system using a Tg(-8.3bphox2b:Kaede) transgenic zebrafish. Genesis 52 985990. 10.1002/dvg.22826 25264359 Harrison V. Connell L. Hayesmoore J. McParland J. Pike M. G. Blair E. (2011). Compound heterozygous deletion of NRXN1 causing severe developmental delay with early onset epilepsy in two sisters. Am. J. Med. Genet. A 155A 28262831. 10.1002/ajmg.a.34255 21964664 He Y. Li B. Sun D. Chen S. (2020). Gut microbiota: implications in Alzheimer’s Disease. J. Clin. Med. 9:2042. 10.3390/jcm9072042 32610630 Henriques P. M. Rahman N. Jackson S. E. Bianco I. H. (2019). Nucleus isthmi is required to sustain target pursuit during visually guided prey-catching. Curr. Biol. 29 1771.e51786.e5. 10.1016/j.cub.2019.04.064 31104935 Higashijima S. Hotta Y. Okamoto H. (2000). Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J. Neurosci. 20 206218. Hill J. M. Bhattacharjee S. Pogue A. I. Lukiw W. J. (2014). The gastrointestinal tract microbiome and potential link to Alzheimer’s disease. Front. Neurol. 5:43. 10.3389/fneur.2014.00043 24772103 Hoffman E. J. Turner K. J. Fernandez J. M. Cifuentes D. Ghosh M. Ijaz S. (2016). Estrogens suppress a behavioral phenotype in zebrafish mutants of the autism risk gene. CNTNAP2. Neuron 89 725733. 10.1016/j.neuron.2015.12.039 26833134 Holmberg A. Schwerte T. Pelster B. Holmgren S. (2004). Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J. Exp. Biol. 207(Pt 23), 40854094. 10.1242/jeb.01260 15498954 Holtmann G. Talley N. J. (2014). The stomach-brain axis. Best Pract. Res. Clin. Gastroenterol. 28 967979. 10.1016/j.bpg.2014.10.001 25439064 Hsiao E. Y. (2014). Gastrointestinal issues in autism spectrum disorder. Harv. Rev. Psychiatry 22 104111. 10.1097/HRP.0000000000000029 24614765 Human Microbiome Project Consortium (2012). A framework for human microbiome research. Nature 486 215221. 10.1038/nature11209 22699610 IACC (2019). IACC Strategic Plan For Autism Spectrum Disorder 2018-2019 Update. Avaliable at: https://iacc.hhs.gov/publications/strategic-plan/2019/ (accessed February 8, 2021). Ijaz S. Hoffman E. J. (2016). Zebrafish: a translational model system for studying neuropsychiatric disorders. J. Am. Acad. Child Adolesc. Psychiatry 55 746748. 10.1016/j.jaac.2016.06.008 27566113 Inagaki A. Hayashi M. Andharia N. Matsuda H. (2019). Involvement of butyrate in electrogenic K(+) secretion in rat rectal colon. Pflugers Arch. 471 313327. 10.1007/s00424-018-2208-y 30250967 Isabella A. J. Barsh G. R. Stonick J. A. Dubrulle J. Moens C. B. (2020). Retinoic acid organizes the zebrafish vagus motor topographic map via spatiotemporal coordination of Hgf/Met Signaling. Dev. Cell 53 344.e5357.e5. 10.1016/j.devcel.2020.03.017 32302545 James D. M. Kozol R. A. Kajiwara Y. Wahl A. L. Storrs E. C. Buxbaum J. D. (2019). Intestinal dysmotility in a zebrafish (Danio rerio) shank3a;shank3b mutant model of autism. Mol. Autism 10:3. 10.1186/s13229-018-0250-4 30733854 Jiang C. Li G. Huang P. Liu Z. Zhao B. (2017). The gut microbiota and Alzheimer’s Disease. J. Alzheimers Dis. 58 115. 10.3233/JAD-161141 28372330 Johnson R. E. Linderman S. Panier T. Wee C. L. Song E. Herrera K. J. (2020). Probabilistic models of larval zebrafish behavior reveal structure on many scales. Curr. Biol. 30 70.e482.e4. 10.1016/j.cub.2019.11.026 31866367 Jordi J. Guggiana-Nilo D. Soucy E. Song E. Y. Lei Wee C. Engert F. (2015). A high-throughput assay for quantifying appetite and digestive dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309 R345R357. 10.1152/ajpregu.00225.2015 26108871 Kaelberer M. M. Bohorquez D. V. (2018). The now and then of gut-brain signaling. Brain Res. 1693(Pt B), 192196. 10.1016/j.brainres.2018.03.027 29580839 Kaelberer M. M. Rupprecht L. E. Liu W. W. Weng P. Bohorquez D. V. (2020). Neuropod cells: the emerging biology of gut-brain sensory transduction. Annu. Rev. Neurosci. 43 337353. 10.1146/annurev-neuro-091619-022657 32101483 Kaslin J. Panula P. (2001). Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J. Comp. Neurol. 440 342377. 10.1002/cne.1390 11745628 Kermen F. Franco L. M. Wyatt C. Yaksi E. (2013). Neural circuits mediating olfactory-driven behavior in fish. Front. Neural Circuits 7:62. 10.3389/fncir.2013.00062 23596397 Klarer M. Arnold M. Gunther L. Winter C. Langhans W. Meyer U. (2014). Gut vagal afferents differentially modulate innate anxiety and learned fear. J. Neurosci. 34 70677076. 10.1523/JNEUROSCI.0252-14.2014 24849343 Klarer M. Krieger J. P. Richetto J. Weber-Stadlbauer U. Gunther L. Winter C. (2018). Abdominal vagal afferents modulate the brain transcriptome and behaviors relevant to schizophrenia. J. Neurosci. 38 16341647. 10.1523/JNEUROSCI.0813-17.2017 29326171 Koch B. E. V. Yang S. Lamers G. Stougaard J. Spaink H. P. (2018). Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat. Commun. 9:4099. 10.1038/s41467-018-06658-4 30291253 Kowalski K. Mulak A. (2019). Brain-Gut-microbiota axis in Alzheimer’s Disease. J. Neurogastroenterol. Motil. 25 4860. 10.5056/jnm18087 30646475 Kozol R. A. (2018). Prenatal neuropathologies in autism spectrum disorder and intellectual disability: the gestation of a comprehensive zebrafish model. J. Dev. Biol. 6:29. 10.3390/jdb6040029 30513623 Kozol R. A. Abrams A. J. James D. M. Buglo E. Yan Q. Dallman J. E. (2016). Function over form: modeling groups of inherited neurological conditions in zebrafish. Front. Mol. Neurosci. 9:55. 10.3389/fnmol.2016.00055 27458342 Latorre R. Sternini C. De Giorgio R. Greenwood-Van Meerveld B. (2016). Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28 620630. 10.1111/nmo.12754 26691223 Lavergne A. Tarifeno-Saldivia E. Pirson J. Reuter A. S. Flasse L. Manfroid I. (2020). Pancreatic and intestinal endocrine cells in zebrafish share common transcriptomic signatures and regulatory programmes. BMC Biol. 18:109. 10.1186/s12915-020-00840-1 32867764 Leader G. Tuohy E. Chen J. L. Mannion A. Gilroy S. P. (2020). Feeding problems, gastrointestinal symptoms, challenging behavior and sensory issues in children and adolescents with autism spectrum disorder. J. Autism Dev. Disord. 50 14011410. 10.1007/s10803-019-04357-7 31955310 Lefter R. Ciobica A. Timofte D. Stanciu C. Trifan A. (2019). A descriptive review on the prevalence of gastrointestinal disturbances and their multiple associations in autism spectrum disorder. Medicina 56:11. 10.3390/medicina56010011 31892195 Li C. Liu Y. Fang H. Chen Y. Weng J. Zhai M. (2020). Study on aberrant eating behaviors, food intolerance, and stereotyped behaviors in autism spectrum disorder. Front. Psychiatry 11:493695. 10.3389/fpsyt.2020.493695 33240114 Li J. Li H. Y. Gu S. Y. Zi H. X. Jiang L. Du J. L. (2020). One-step generation of zebrafish carrying a conditional knockout-knockin visible switch via CRISPR/Cas9-mediated intron targeting. Sci. China Life Sci. 63 5967. 10.1007/s11427-019-1607-9 31872378 Liang S. Wu X. Jin F. (2018). Gut-brain psychology: rethinking psychology from the microbiota–gut–brain axis. Front. Integr. Neurosci. 12:33. 10.3389/fnint.2018.00033 30271330 Liddle R. A. (2018). Parkinson’s disease from the gut. Brain Res. 1693(Pt B), 201206. 10.1016/j.brainres.2018.01.010 29360467 Liu C. X. Li C. Y. Hu C. C. Wang Y. Lin J. Jiang Y. H. (2018). CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Mol. Autism 9:23. 10.1186/s13229-018-0204-x 29619162 Lundin A. Bok C. M. Aronsson L. Bjorkholm B. Gustafsson J. A. Pott S. (2008). Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol. 10 10931103. 10.1111/j.1462-5822.2007.01108.x 18088401 Ma P. M. (1997). Catecholaminergic systems in the zebrafish. III. Organization and projection pattern of medullary dopaminergic and noradrenergic neurons. J. Comp. Neurol. 381 411427. MacFabe D. F. Cain D. P. Rodriguez-Capote K. Franklin A. E. Hoffman J. E. Boon F. (2007). Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain Res. 176 149169. 10.1016/j.bbr.2006.07.025 16950524 Manoli D. S. State M. W. (2021). Autism spectrum disorder genetics and the search for pathological mechanisms. Am. J. Psychiatry 178 3038. 10.1176/appi.ajp.2020.20111608 33384012 Margari L. Marzulli L. Gabellone A. de Giambattista C. (2020). Eating and mealtime behaviors in patients with autism spectrum disorder: current perspectives. Neuropsychiatr. Dis. Treat. 16 20832102. 10.2147/NDT.S224779 32982247 Margolis K. G. Buie T. M. Turner J. B. Silberman A. E. Feldman J. F. Murray K. F. (2019). Development of a brief parent-report screen for common gastrointestinal disorders in autism spectrum disorder. J. Autism Dev. Disord. 49 349362. 10.1007/s10803-018-3767-7 30350113 Marjoram L. Alvers A. Deerhake M. E. Bagwell J. Mankiewicz J. Cocchiaro J. L. (2015). Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 112 27702775. 10.1073/pnas.1424089112 25730872 Marques J. C. Li M. Schaak D. Robson D. N. Li J. M. (2020). Internal state dynamics shape brainwide activity and foraging behaviour. Nature 577 239243. 10.1038/s41586-019-1858-z 31853063 Mayer E. A. Padua D. Tillisch K. (2014). Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioessays 36 933939. 10.1002/bies.201400075 25145752 Mayer E. A. Tillisch K. Gupta A. (2015). Gut/brain axis and the microbiota. J. Clin. Invest. 125 926938. 10.1172/JCI76304 25689247 McCue L. M. Flick L. H. Twyman K. A. Xian H. (2017). Gastrointestinal dysfunctions as a risk factor for sleep disorders in children with idiopathic autism spectrum disorder: a retrospective cohort study. Autism 21 10101020. 10.1177/1362361316667061 28954536 McElhanon B. O. McCracken C. Karpen S. Sharp W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133 872883. 10.1542/peds.2013-3995 24777214 McLean D. L. Fetcho J. R. (2004). Relationship of tyrosine hydroxylase and serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish. J. Comp. Neurol. 480 5771. 10.1002/cne.20281 15514919 McMahon K. Q. Papandreou A. Ma M. Barry B. J. Mirzaa G. M. Dobyns W. B. (2015). Familial recurrences of FOXG1-related disorder: evidence for mosaicism. Am. J. Med. Genet. A 167A 30963102. 10.1002/ajmg.a.37353 26364767 Melancon E. Gomez De La Torre Canny S. Sichel S. Kelly M. Wiles T. J. Rawls J. F. (2017). Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol. 138 61100. 10.1016/bs.mcb.2016.11.005 28129860 Motil K. J. Caeg E. Barrish J. O. Geerts S. Lane J. B. Percy A. K. (2012). Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. J. Pediatr. Gastroenterol. Nutr. 55 292298. 10.1097/MPG.0b013e31824b6159 22331013 Moulis H. Garsten J. J. Marano A. R. Elser J. M. (1992). Tuberous sclerosis complex: review of the gastrointestinal manifestations and report of an unusual case. Am. J. Gastroenterol. 87 914918. Mulak A. Bonaz B. (2015). Brain-gut-microbiota axis in Parkinson’s disease. World J. Gastroenterol. 21 1060910620. 10.3748/wjg.v21.i37.10609 26457021 Muller P. A. Schneeberger M. Matheis F. Wang P. Kerner Z. Ilanges A. (2020). Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature 583 441446. 10.1038/s41586-020-2474-7 32641826 Muto A. Lal P. Ailani D. Abe G. Itoh M. Kawakami K. (2017). Activation of the hypothalamic feeding centre upon visual prey detection. Nat. Commun. 8:15029. 10.1038/ncomms15029 28425439 Nechiporuk A. Linbo T. Poss K. D. Raible D. W. (2007). Specification of epibranchial placodes in zebrafish. Development 134 611623. 10.1242/dev.02749 17215310 Neuhaus E. Bernier R. A. Tham S. W. Webb S. J. (2018). Gastrointestinal and psychiatric symptoms among children and adolescents with autism spectrum disorder. Front. Psychiatry 9:515. 10.3389/fpsyt.2018.00515 30405456 Ng A. N. de Jong-Curtain T. A. Mawdsley D. J. White S. J. Shin J. Appel B. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286 114135. 10.1016/j.ydbio.2005.07.013 16125164 Niu X. Liu L. Wang T. Chuan X. Yu Q. Du M. (2020). Mapping of extrinsic innervation of the gastrointestinal tract in the mouse embryo. J. Neurosci. 40 66916708. 10.1523/JNEUROSCI.0309-20.2020 32690615 Nomaksteinsky M. Kassabov S. Chettouh Z. Stoekle H. C. Bonnaud L. Fortin G. (2013). Ancient origin of somatic and visceral neurons. BMC Biol. 11:53. 10.1186/1741-7007-11-53 23631531 Parker M. J. Fryer A. E. Shears D. J. Lachlan K. L. McKee S. A. Magee A. C. (2015). De novo, heterozygous, loss-of-function mutations in SYNGAP1 cause a syndromic form of intellectual disability. Am. J. Med. Genet. A 167A 22312237. 10.1002/ajmg.a.37189 26079862 Pattyn A. Morin X. Cremer H. Goridis C. Brunet J. F. (1999). The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399 366370. 10.1038/20700 10360575 Peippo M. Ignatius J. (2012). Pitt-hopkins syndrome. Mol. Syndromol. 2 171180. 10.1159/000335287 22670138 Pellicano E. Dinsmore A. Charman T. (2014). What should autism research focus upon? Community views and priorities from the United Kingdom. Autism 18 756770. 10.1177/1362361314529627 24789871 Penzol M. J. Salazar de Pablo G. Llorente C. Moreno C. Hernandez P. Dorado M. L. (2019). Functional gastrointestinal disease in autism spectrum disorder: a retrospective descriptive study in a clinical sample. Front. Psychiatry 10:179. 10.3389/fpsyt.2019.00179 31024351 Phelps D. Brinkman N. E. Keely S. P. Anneken E. M. Catron T. R. Betancourt D. (2017). Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci. Rep. 7:11244. 10.1038/s41598-017-10517-5 28894128 Prchalova D. Havlovicova M. Sterbova K. Stranecky V. Hancarova M. Sedlacek Z. (2017). Analysis of 31-year-old patient with SYNGAP1 gene defect points to importance of variants in broader splice regions and reveals developmental trajectory of SYNGAP1-associated phenotype: case report. BMC Med. Genet. 18:62. 10.1186/s12881-017-0425-4 28576131 Qiao R. Sheng C. Lu Y. Zhang Y. Ren H. Lemos B. (2019). Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ. 662 246253. 10.1016/j.scitotenv.2019.01.245 30690359 Ramprasad C. Douglas J. Y. Moshiree B. (2018). Parkinson’s Disease and current treatments for its gastrointestinal neurogastromotility effects. Curr. Treat. Opt. Gastroenterol. 16 489510. 10.1007/s11938-018-0201-3 30361854 Randlett O. Wee C. L. Naumann E. A. Nnaemeka O. Schoppik D. Fitzgerald J. E. (2015). Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 12 10391046. 10.1038/nmeth.3581 26778924 Rao M. Gershon M. D. (2016). The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13 517528. 10.1038/nrgastro.2016.107 27435372 Rawls J. F. Samuel B. S. Gordon J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. U.S.A. 101 45964601. 10.1073/pnas.0400706101 15070763 Rich A. (2009). A new high-content model system for studies of gastrointestinal transit: the zebrafish. Neurogastroenterol. Motil. 21 225228. 10.1111/j.1365-2982.2008.01251.x 19254352 Rose S. Bennuri S. C. Murray K. F. Buie T. Winter H. Frye R. E. (2017). Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: a blinded case-control study. PLoS One 12:e0186377. 10.1371/journal.pone.0186377 29028817 Roy-Carson S. Natukunda K. Chou H. C. Pal N. Farris C. Schneider S. Q. (2017). Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment. BMC Genomics 18:290. 10.1186/s12864-017-3653-2 28403821 Sakai C. Ijaz S. Hoffman E. J. (2018). Zebrafish models of neurodevelopmental disorders: past, present, and future. Front. Mol. Neurosci. 11:294. 10.3389/fnmol.2018.00294 30210288 Sampson T. R. Debelius J. W. Thron T. Janssen S. Shastri G. G. Ilhan Z. E. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s Disease. Cell 167 1469.e121480.e12. 10.1016/j.cell.2016.11.018 27912057 Sauer A. K. Bockmann J. Steinestel K. Boeckers T. M. Grabrucker A. M. (2019). Altered intestinal morphology and microbiota composition in the autism spectrum disorders associated SHANK3 mouse model. Int. J. Mol. Sci. 20:2134. 10.3390/ijms20092134 31052177 Schroeder B. O. Backhed F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22 10791089. 10.1038/nm.4185 27711063 Severance E. G. Prandovszky E. Castiglione J. Yolken R. H. (2015). Gastroenterology issues in schizophrenia: why the gut matters. Curr. Psychiatry Rep. 17:27. 10.1007/s11920-015-0574-0 25773227 Severance E. G. Yolken R. H. Eaton W. W. (2016). Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr. Res. 176 2335. 10.1016/j.schres.2014.06.027 25034760 Sgritta M. Dooling S. W. Buffington S. A. Momin E. N. Francis M. B. Britton R. A. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101 246.e6259.e6. 10.1016/j.neuron.2018.11.018 30522820 Shaaya E. A. Pollack S. F. Boronat S. Davis-Cooper S. Zella G. C. Thibert R. L. (2015). Gastrointestinal problems in 15q duplication syndrome. Eur. J. Med. Genet. 58 191193. 10.1016/j.ejmg.2014.12.012 25573720 Shaco-Levy R. Jasperson K. W. Martin K. Samadder N. J. Burt R. W. Ying J. (2017). Gastrointestinal polyposis in cowden syndrome. J. Clin. Gastroenterol. 51 e60e67. 10.1097/MCG.0000000000000703 27661969 Sharon G. Cruz N. J. Kang D. W. Gandal M. J. Wang B. Kim Y. M. (2019). Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177 1600.e171618.e17. 10.1016/j.cell.2019.05.004 31150625 Shontz E. C. Souders C. L. II Schmidt J. T. Martyniuk C. J. (2018). Domperidone upregulates dopamine receptor expression and stimulates locomotor activity in larval zebrafish (Danio rerio). Genes Brain Behav. 17:e12460. 10.1111/gbb.12460 29377542 Siper P. M. De Rubeis S. Trelles M. D. P. Durkin A. Di Marino D. Muratet F. (2017). Prospective investigation of FOXP1 syndrome. Mol. Autism 8:57. 10.1186/s13229-017-0172-6 29090079 Srikantha P. Mohajeri M. H. (2019). The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int. J. Mol. Sci. 20:2115. 10.3390/ijms20092115 31035684 Stachnik J. Gabay M. (2010). Emerging role of aripiprazole for treatment of irritability associated with autistic disorder in children and adolescents. Adolesc. Health Med. Ther. 1 105114. 10.2147/AHMT.S9819 24600266 Stednitz S. J. McDermott E. M. Ncube D. Tallafuss A. Eisen J. S. Washbourne P. (2018). Forebrain control of behaviorally driven social orienting in zebrafish. Curr. Biol. 28 2445.e32451.e3. 10.1016/j.cub.2018.06.016 30057306 Stengel A. Tache Y. (2010). Corticotropin-releasing factor signaling and visceral response to stress. Exp. Biol. Med. 235 11681178. 10.1258/ebm.2010.009347 20881321 Sternson S. M. Eiselt A. K. (2017). Three Pillars for the neural control of appetite. Annu. Rev. Physiol. 79 401423. 10.1146/annurev-physiol-021115-104948 27912679 Stil A. Drapeau P. (2016). Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish. Dev. Neurobiol. 76 642660. 10.1002/dneu.22350 26408263 Suarez A. N. Hsu T. M. Liu C. M. Noble E. E. Cortella A. M. Nakamoto E. M. (2018). Gut vagal sensory signaling regulates hippocampus function through multi-order pathways. Nat. Commun. 9:2181. 10.1038/s41467-018-04639-1 29872139 Tache Y. Yang H. Miampamba M. Martinez V. Yuan P. Q. (2006). Role of brainstem TRH/TRH-R1 receptors in the vagal gastric cholinergic response to various stimuli including sham-feeding. Auton. Neurosci. 125 4252. 10.1016/j.autneu.2006.01.014 16520096 Thaiss C. A. Zmora N. Levy M. Elinav E. (2016). The microbiome and innate immunity. Nature 535 6574. 10.1038/nature18847 27383981 Tian X. Chen J. Zhang J. Yang X. Ji T. Zhang Y. (2019). The efficacy of ketogenic diet in 60 chinese patients with dravet syndrome. Front. Neurol. 10:625. 10.3389/fneur.2019.00625 31249551 Toscano M. De Grandi R. Grossi E. Drago L. (2017). Role of the human breast milk-associated microbiota on the newborns’ immune system: a mini review. Front. Microbiol. 8:2100. 10.3389/fmicb.2017.02100 29118752 Tsang A. H. Nuzzaci D. Darwish T. Samudrala H. Blouet C. (2020). Nutrient sensing in the nucleus of the solitary tract mediates non-aversive suppression of feeding via inhibition of AgRP neurons. Mol. Metab. 42:101070. 10.1016/j.molmet.2020.101070 32898712 Tye C. Runicles A. K. Whitehouse A. J. O. Alvares G. A. (2019). Characterizing the interplay between autism spectrum disorder and comorbid medical conditions: an integrative review. Front. Psychiatry 9:751. 10.3389/fpsyt.2018.00751 30733689 Uyttebroek L. Shepherd I. T. Harrisson F. Hubens G. Blust R. Timmermans J. P. (2010). Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J. Comp. Neurol. 518 44194438. 10.1002/cne.22464 20853514 van der Vaart M. Svoboda O. Weijts B. G. Espin-Palazon R. Sapp V. Pietri T. (2017). Mecp2 regulates tnfa during zebrafish embryonic development and acute inflammation. Dis. Model Mech. 10 14391451. 10.1242/dmm.026922 28993314 Van Dijck A. Vulto-van Silfhout A. T. Cappuyns E. van der Werf I. M. Mancini G. M. Tzschach A. (2019). Clinical presentation of a complex neurodevelopmental disorder caused by mutations in ADNP. Biol. Psychiatry 85 287297. 10.1016/j.biopsych.2018.02.1173 29724491 Van Sebille Y. Z. Gibson R. J. Wardill H. R. Carney T. J. Bowen J. M. (2019). Use of zebrafish to model chemotherapy and targeted therapy gastrointestinal toxicity. Exp. Biol. Med. 244 11781185. 10.1177/1535370219855334 31184924 Vanner S. Greenwood-Van Meerveld B. Mawe G. Shea-Donohue T. Verdu E. F. Wood J. (2016). Fundamentals of neurogastroenterology: basic science. Gastroenterology 150 12801291. 10.1053/j.gastro.2016.02.018 27144618 Vanwalleghem G. C. Ahrens M. B. Scott E. K. (2018). Integrative whole-brain neuroscience in larval zebrafish. Curr. Opin. Neurobiol. 50 136145. 10.1016/j.conb.2018.02.004 29486425 Vendrell-Llopis N. Yaksi E. (2015). Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Sci. Rep. 5:17825. 10.1038/srep17825 26639368 Villas N. Meskis M. A. Goodliffe S. (2017). Dravet syndrome: characteristics, comorbidities, and caregiver concerns. Epilepsy Behav. 74 8186. 10.1016/j.yebeh.2017.06.031 28732259 Vincis R. Fontanini A. (2019). Central taste anatomy and physiology. Handb. Clin. Neurol. 164 187204. 10.1016/B978-0-444-63855-7.00012-5 31604547 Vlaskamp D. R. M. Shaw B. J. Burgess R. Mei D. Montomoli M. Xie H. (2019). SYNGAP1 encephalopathy: a distinctive generalized developmental and epileptic encephalopathy. Neurology 92 e96e107. 10.1212/WNL.0000000000006729 30541864 Wallace K. N. Akhter S. Smith E. M. Lorent K. Pack M. (2005). Intestinal growth and differentiation in zebrafish. Mech. Dev. 122 157173. 10.1016/j.mod.2004.10.009 15652704 Wallace K. N. Pack M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev. Biol. 255 1229. 10.1016/s0012-1606(02)00034-9 Wang L. Christophersen C. T. Sorich M. J. Gerber J. P. Angley M. T. Conlon M. A. (2012). Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis. Sci. 57 20962102. 10.1007/s10620-012-2167-7 22535281 Wee C. L. Song E. Y. Johnson R. E. Ailani D. Randlett O. Kim J. Y. (2019). A bidirectional network for appetite control in larval zebrafish. eLife 8:e43775. 10.7554/eLife.43775 31625906 Wen J. Mercado G. P. Volland A. Doden H. L. Lickwar C. R. Crooks T. (2020). Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. bioRxiv [Preprint]. 10.1101/2020.12.13.422569 Wiles T. J. Guillemin K. (2020). Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr. Opin. Microbiol. 54 8794. 10.1016/j.mib.2020.01.012 32062152 Williams C. A. Driscoll D. J. Dagli A. I. (2010). Clinical and genetic aspects of angelman syndrome. Genet. Med. 12 385395. 10.1097/GIM.0b013e3181def138 20445456 Willms R. J. Hocking J. C. Foley E. (2020). A cell atlas of microbe-responsive processes in the zebrafish intestine. bioRxiv [Preprint]. 10.1101/2020.11.06.371609 Wolf S. (1981). The psyche and the stomach. A historical vignette. Gastroenterology 80 605614. Won Y. J. Ono F. Ikeda S. R. (2012). Characterization of Na+ and Ca2+ channels in zebrafish dorsal root ganglion neurons. PLoS One 7:e42602. 10.1371/journal.pone.0042602 22880050 Wright M. A. Mo W. Nicolson T. Ribera A. B. (2010). In vivo evidence for transdifferentiation of peripheral neurons. Development 137 30473056. 10.1242/dev.052696 20685733 Yanez J. Souto Y. Pineiro L. Folgueira M. Anadon R. (2017). Gustatory and general visceral centers and their connections in the brain of adult zebrafish: a carbocyanine dye tract-tracing study. J. Comp. Neurol. 525 333362. 10.1002/cne.24068 27343143 Yano J. M. Yu K. Donaldson G. P. Shastri G. G. Ann P. Ma L. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 264276. 10.1016/j.cell.2015.02.047 25860609 Ye L. Bae M. Cassilly C. D. Jabba S. V. Thorpe D. W. Martin A. M. (2020). Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 29 179.e9196.e9. 10.1016/j.chom.2020.11.011 33352109 Zhang C. Kaye J. A. Cai Z. Wang Y. Prescott S. L. Liberles S. D. (2020). Area postrema cell types that mediate nausea-associated behaviors. Neuron 109 461.e5472.e5. 10.1016/j.neuron.2020.11.010 33278342 Zhang W. Waise T. M. Z. Toshinai K. Tsuchimochi W. Naznin F. Islam M. N. (2020). Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system. Sci. Rep. 10:18415. 10.1038/s41598-020-75621-5 33116243 Zhao X. Pack M. (2017). Modeling intestinal disorders using zebrafish. Methods Cell Biol. 138 241270. 10.1016/bs.mcb.2016.11.006 28129846 Zweier C. de Jong E. K. Zweier M. Orrico A. Ousager L. B. Collins A. L. (2009). CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am. J. Hum. Genet. 85 655666. 10.1016/j.ajhg.2009.10.004 19896112
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016goodfi.com.cn
      www.lwchain.com.cn
      www.ljchain.com.cn
      formycon.com.cn
      eqgzyy.com.cn
      www.gjqcwj.com.cn
      euxbko.com.cn
      herocean.com.cn
      www.psa-fca.com.cn
      qn0538.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p