Edited by: Liana Fattore, CNR Neuroscience Institute (IN), Italy
Reviewed by: Kristen Onos, Jackson Laboratory, United States; Stacey Sukoff Rizzo, University of Pittsburgh, United States
This article was submitted to Pathological Conditions, a section of the journal Frontiers in Behavioral Neuroscience
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Increasing efforts have been made in the last decades to increase the face validity of Alzheimer's disease (AD) mouse models. Main advancements have consisted in generating AD mutations closer to those identified in humans, enhancing genetic diversity of wild-type backgrounds, and choosing protocols much apt to reveal AD-like cognitive dysfunctions. Nevertheless, two aspects remain less considered: the cognitive specialization of inbred strains used as recipient backgrounds of mutations and the heuristic importance of studying destabilization of memory circuits in pre-symptomatic mice facing cognitive challenges. This article underscores the relevance of these behavioral/experimental aspects by reviewing data which show that (i) inbred mice differ in their innate predisposition to rely on episodic vs. procedural memory, which implicates differential sensitivity to mutations aimed at disrupting temporal lobe-dependent memory, and that (ii) investigating training-driven neural alterations in asymptomatic mutants unveils early synaptic damage, which considerably anticipates detection of AD first signs.
香京julia种子在线播放
The genetic bases of behavior have long been an exclusive matter of study for evolutionary biologists intended to verify the inheritance and conservation of behavioral traits across generations or species (Atchley and Fitch,
Corollary to the demonstration that gene control behavior is the assumption that gene dysfunctions are pathogenic for behavior. In the late 20th century, molecular genetics made it possible to identify mutated genes in human patients showing a variety of diseases including those impacting cognition. The possibility to insert those genes in the mouse genome led to build up model organisms expected to recapitulate disease-specific neural and behavioral hallmarks. This objective was, however, partially achieved. Restricting our survey of the literature to data from Alzheimer's disease (AD) mouse models, it is apparent that the multiplicity of genomic manipulations aimed at overexpressing the three main human mutated proteins (APP, Tau, and presenilin (1) separately or jointly in likewise multiple wild-type (Wt) genetic backgrounds did not entirely reproduce, or even failed to model, the symptoms of human pathology. Hence, strategies to refine the face validity of AD models have been established, with a majority of those consisting in producing mutations closer to those observed in patients, and with little consideration of the cognitive profile of Wt mice, these mutations were expected to disrupt. Because neurodegenerative processes in AD patients start to develop in the temporal lobe, disrupt episodic and spatial memory but preserve motor-based procedural memory (Eldridge et al.,
Inbreeding consists of mating closely related individuals (sisters and brothers) taken from random bred populations for about 20 generations to produce a subpopulation whose members are homozygous, that is, have the same genotype. Inbred mice were initially generated by physiopathologists who identified the advantage of having individuals ruling out genetic variance and showing homogeneous traits to better circumscribe the nature and inheritance of several pathologies. For example, criteria of selection to start the production of inbred lines were “predisposition to develop neoplasia” to determine if cancer was inherited (Little,
At the dawn of neuroscience, the most popular tasks performed to investigate learning in rodents were those designed by experimental animal behaviorists, which prevalently required to form motor habits or stimulus–response associations, and in which C57BL/6J mice (C57) were identified as poor learners. Specifically, C57 performed worse than BALBc, or DBA/2J (DBA), in the Lashley maze (Oliverio et al.,
Considering strain-specific levels of performance, it became rapidly evident that a majority of tasks in which C57 performed poorly were those in which DBA performed well, and vice versa. Beyond their aforementioned superiority in the Lashley maze and active avoidance, DBA mice were found to score better than C57 in cue-based fear conditioning (Paylor et al.,
The notion of memory systems arises from observations initially carried out in human subjects (Cohen and Squire,
In a majority of individuals, memory systems can be activated separately, concurrently, or sequentially, depending on the situation to copy with. For example, in the plus maze task (Packard and McGaugh,
The aforementioned experiments show that C57 predominantly form configural environmental representations in which elemental stimuli are embedded in and need to be disentangled to predict reinforcement and guide behavior. Thus, any manipulation of experimental factors that facilitates disentangling is expected to enhance cue-based performance in this mouse strain. This possibility was demonstrated in a study in which C57 and seven other mouse strains including DBA were trained to press a lever upon presentation of an elemental stimulus (tone or light) to avoid delivery of an electric footshock. DBA showed superior avoidance performance when the tone or the light was of short duration. However, a gradual increase in the stimulus duration was found to progressively abolish interstrain differences, thereby suggesting that C57 benefited for longer cue presentation to disentangle them from the context (Renzi and Sansone,
From the creation of the first transgenic mice, it clearly appeared that controlling the characteristics of the recipient strain was crucial to reveal or maintain expected transgene effects because inserting a mutated gene in different mouse strains was found to produce variable phenotypes and because it was observed in some cases that a phenotype was progressively losing its specificity due to non-specific mutations or uncontrolled environmental effects, thereby preventing data reproducibility. Multiple research groups with an expertise in mouse behavior genetics (Crusio,
One of the first transgenic murine models of Alzheimer's disease is the Tg2576 mouse developed by Hsiao et al. (
These models were generated using the
Memory formation requires changes in neuronal network connectivity mediated by modifications in the strength and number of synapses. Since the discovery that synapses are primary targets of Aβ oligomers (Selkoe,
Heterozygous B6-Tg/Thy1APP23Sdz (APP23) mice show amyloid plaques in the hippocampus (Sturchler-Pierrat and Staufenbiel,
The 6–8-week-old 3xTg-AD mice exhibit intact synaptic plasticity at rest. Nevertheless, differently from Wt mice, they show increased synaptic depression when their synaptic homeostasis is altered by suppression of ryanodine receptor (RyR)-evoked calcium signaling. The authors hypothesize that in baseline conditions, 3xTg-AD mice exhibit increased activity of this receptor which, by augmenting RyR-evoked calcium release, blocks the predisposition of mutant synapses to exhibit long-term depression (Chakroborty et al.,
Tg2576 mice and their Wt C57 controls trained for CFC at the age of 2 months show the same reactivity to footshocks and exhibit immediate c-fos activation in the dorsal CA1 region of the hippocampus and the basolateral region of the amygdala (BLA). When returned 24 h later to the safe training context, all mice show intense freezing, but differently from Wt mice, mutant mice do not exhibit any sign of c-fos activation or dendritic spine remodeling in CA1, instead they show c-fos overactivation and dendritic spine remodeling in BLA, in line with the view that the latter region compensates for hippocampus failure and sustains their intact CFC performance. Examination of Aβ levels 24 h after CFC in the mutant mice non-returned to the conditioning cage indicates a selective increase in Aβ42 oligomers in CA1 but not BLA. This is shown by Western blot analyses using the amino-terminal specific anti-Aβ42 antibody AD54D2 and the carboxy-terminal specific anti-Aβ42 antibody (clone 295F2), as well as by immunofluorescent detection of Aβ using the D54D2 and the carboxy-terminal specific antibody 12F4. In the Wt mice, the Aβ42 signal is about undetectable in both regions at rest, and no rise is observed following CFC. Thus, CFC learning triggers immediate release of Aβ species in the hippocampus of cognitively asymptomatic Tg2576 mutants (Pignataro et al.,
Although it may appear trivial, the first requirement for the recipient background of an APP mutation is to exhibit sufficiently elevated episodic memory capacities likely to be significantly altered by the mutation. At the first sight, B6 mice appear appropriate given their optimal episodic memory scores, even though their outstandingly functional hippocampus is
The second requirement is to choose a strain showing a cognitive, even mild, deficit at a sufficient early age to have the performance of the wild-type counterpart unaffected by aging. Apparently, C57 mice align again with this criterion. For example, Tg2576 in a C57 background shows a CFC deficit associated with a decrease in hippocampal spines (D'Amelio et al.,
In addition, these observations raise another equally important question, namely, the choice of experimental protocols allowing to anticipate neural dysfunctions at a stage where no, or mild, cognitive impairment is observed to start therapies when maximal effectiveness can be expected.
The fact that inbred mouse strains do not reflect the phenotypic variability observed in natural populations limits
The author confirms being the sole contributor of this work and has approved it for publication.
This work was funded by the Italian Ministry of Health (5XMille–2018).
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.