Front. Antibiot. Frontiers in Antibiotics Front. Antibiot. 2813-2467 Frontiers Media S.A. 10.3389/frabi.2023.1156258 Antibiotics Original Research Prevalence and antimicrobial resistance profile of bacterial foodborne pathogens in Nile tilapia fish (Oreochromis niloticus) at points of retail sale in Nairobi, Kenya Mumbo Millicent T. 1 2 3 Nyaboga Evans N. 2 Kinyua Johnson 1 Muge Edward K. 2 Mathenge Scholastica G. K. 3 Muriira Geoffrey 4 Rotich Henry 4 Njiraini Bernard 4 Njiru Joshua M. 4 * 1 Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya 2 Department of Biochemistry, University of Nairobi, Nairobi, Kenya 3 Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya 4 Research and Development Department, Kenya Bureau of Standards, Nairobi, Kenya

Edited by: Akhilesh K. Chaurasia, Sungkyunkwan University, Republic of Korea

Reviewed by: Nayab Batool, University of Agriculture, Faisalabad, Pakistan; Mahmoud Mabrok, Suez Canal University, Egypt

*Correspondence: Joshua M. Njiru, njiruj@kebs.org

24 05 2023 2023 2 1156258 01 02 2023 02 05 2023 Copyright © 2023 Mumbo, Nyaboga, Kinyua, Muge, Mathenge, Muriira, Rotich, Njiraini and Njiru 2023 Mumbo, Nyaboga, Kinyua, Muge, Mathenge, Muriira, Rotich, Njiraini and Njiru

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Proteus spp., Staphylococcus spp., Pseudeomonas spp., and pathogenic Vibrios are among the major foodborne pathogens associated with the consumption of contaminated fish. The increasing occurrence of antimicrobial resistance in these pathogens is a serious public health concern globally and therefore continuous monitoring of antimicrobial resistance of these bacteria along the food chain is crucial for for control of foodborne illnesses. The aim of this study was to assess the prevalence, antimicrobial resistance patterns, antibiotic resistance genes, and genetic diversity of bacterial foodborne pathogens recovered from fresh Nile tilapia (Oreochromis niloticus) obtained from retail markets in Nairobi, Kenya. A total of 68 O. niloticus fish with an average weight of 300.12 ± 25.66 g and body length of 23.00 ± 0.82 cm were randomly sampled from retail markets and tested for the presence of Proteus, Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio cholerae, and Vibrio parahaemolyticus. Standard culture-based microbiological and Kirby–Bauer agar disk diffusion methods were used to isolate and determine the antimicrobial resistance patterns of the isolates to 11 selected antibiotics. Statistical analysis was performed using Minitab v17.1, with p < 0.05 considered significant. The genetic diversity of the multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria was determined using 16S rRNA sequencing and phylogenetic analysis, and polymerase chain reaction (PCR) was used for detection of antibiotic resistance genes in MDR bacterial isolates. High levels of bacterial contamination were detected in fresh O. niloticus fish (44/68, 64.71%). The most prevalent bacteria were Proteus spp. (44.12%), with the rest of the bacterial species registering a prevalence of 10.29%, 4.41%, 2.94%, and 2.94% (for S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus, respectively). Antimicrobial resistance was detected in all the bacteria species and all the isolates were resistant to at least one antibiotic except cefepime (30 µg). Additionally, 86.36% of the isolates exhibited multidrug resistance, with higher multiple antibiotic resistance indices (MAR index >0.3) indicating that fresh O. niloticus fish were highly contaminated with MDR bacteria. Results of 16S rRNA sequences, BLASTn analysis, and phylogenetic trees confirmed the identified MDR bacterial isolates as Proteus mirabilis and other Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus. PCR analysis confirmed the presence of multiple antibiotic resistance genes blaTEM-1, blaCMY-2, tetA, tetC, Sul2, dfrA7, strA, and aadA belonging to β-lactamases, tetracycline, sulfonamide, trimethoprim, and aminoglycosides in all the MDR bacterial isolates. There was strong correlation between antibiotic- resistant genes and phenotypic resistance to antibiotics of MDR bacteria. This study showed high prevalence of multidrug resistance among foodborne bacterial isolates from fresh O. niloticus fish obtained from retail markets. From this study, we conclude that fresh O. niloticus fish are a potential source of MDR bacteria, which could be a major risk to public health as a consequence of their dissemination along the human food chain. These results highlight the prevalence of antimicrobial-resistant foodborne pathogens in fish purchased from retail markets and underscore the risk associated with improper handling of fish.

antibiotic resistance fishborne bacteria multidrug resistance Oreochromis niloticus prevalence section-in-acceptance Antibiotic Resistance

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Bacterial contamination is responsible for more than 600 million cases of foodborne illnesses, with 420,000 fatal infections annually (World Health Organization, 2015). This is a huge economic burden to low- and middle-income countries because the estimated cost of treatment is about USD 110 billion per year. The main cause of foodborne infections is the presence of pathogenic bacteria which produce toxins in foods, especially animal-derived foods (Addis and Sisay, 2015). Fish has been identified as one of the reservoirs of pathogenic bacteria linked to human illnesses (Novotny et al., 2004). Fish is an integral part of the human diet for many generations and is promoted because of its health benefits, providing a rich source of animal protein, omega-3 fatty acids, vitamin D, selenium, and iodine (Tørris et al., 2018). Of particular interest is Nile tilapia (Oreochromis niloticus), which has become more popular as indicated by increasing levels of consumption (Obiero et al., 2022). However, both raw and undercooked fish can expose consumers to many types of pathogenic bacteria, either from their original aquatic environment or their postharvest handling, storage, and processing conditions (Vázquez-Sánchez et al., 2012; Baliere et al., 2015). Therefore, pathogenic bacteria can be introduced into fish at any point throughout the production and supply chain.

      Foodborne pathogens such as Plesiomonas shigelloides, Salmonella spp., Aeromonas spp., Proteus spp., Yersinia, Shigella, Enterobacter, P. aeruginosa, S. aureus, V. parahaemolyticus, V. cholerae, Bacillus, Klebsiella, Serratia spp., and pathogenic Escherichia, are of importance in fish (Novotny et al., 2004) because they are responsible for foodborne illnesses such as diarrhea, gastroenteritis, typhoid fever, and dysentery. These illnesses pose significant health risks, including death, to consumers (Obande et al., 2017). Outbreaks of fish-associated food poisoning are caused by the consumption of raw or insufficiently heat-treated fish contaminated with Vibrios from the water environment (Vibrio spp.) or terrestrial sources (Salmonella spp., Shigella spp., Staphylococcus spp., Pseudomonas spp.) (Novotny et al., 2004). Vibrios are Gram-negative bacteria and ubiquitous in aquatic environments such as aquaculture, marine, and estuarine, either free-living in water, sediments or associated with shrimps and fishes (Vezzulli et al., 2010). Pathogenic Vibrios of major public health importance are Vibrio vulnificus, V. parahaemolyticus, and V. cholerae. Vibrios species have been observed to be associated with deadly cholera outbreaks globally (WHO, 2021a). For example, the consumption of dried fish was linked with a cholera epidemic in a village (Ifakara) in southern Tanzania in 1997 (Acosta et al., 2001). An outbreak of cholera in Germany in 2001 was associated with fresh fish imported from Nigeria (Schurmann et al., 2002). Therefore, continuous monitoring of Vibrios in fish is important for food safety control.

      S. aureus, a Gram-positive bacterium, is the most prevalent foodborne pathogen of the genus Staphylococcus and among the leading causes of food contamination, and spoils food by producing lethal enterotoxin (Akbar and Anal, 2014). S. aureus has been reported in fish and fishery products (Vaiyapuri et al., 2019). S. aureus is not a natural microbiota of fish and therefore its presence in fish is associated with unhygienic handling by fish handlers, processors or sellers, cross-contamination during transport and storage, and contamination by workers, due to the presence of this pathogen in the microbiome of most humans (Saito et al., 2011; Hammad et al., 2012; Sergelidis et al., 2014; Badawy et al., 2022). Proteus mirabilis is a Gram-negative, rod-shaped bacterium found in the environment, animal microbiota and humans (Drzewiecka, 2016), and an important zoonotic pathogen that causes infections in animals and humans. It causes human urinary tract infections and extraintestinal infections such as respiratory, ear, eye, nose, skin, and wound infections (Sanches et al., 2019). P. mirabilis causes food poisoning through consumption of contaminated food, and high incidence has been reported in various countries (Gong et al., 2019). Therefore, presence of P. mirabilis in fish is a threat to the health of the consumer, especially when the specific strain possesses a variety of virulence factors that contribute to human infections. P. aeruginosa is an opportunistic bacterium with the ability to inhabit animals, soil, water, and plants, from which it is easily transmissible. It is one of the major causes of bacterial diseases in fish and there is growing evidence of P. aeruginosa in foodborne infections (Bricha et al., 2009; Nawaz and Bhattarai, 2015; Virupakshaiah and Hemalata, 2016). Various Pseudomonas species are multidrug resistant and resistance is likely to evolve over time, which explains why the number of effective antibiotics is decreasing and this may pose threat to public health (Algammal et al., 2020; Ayman et al., 2022). It is therefore important to determine the role of O. niloticus fish as a reservoir of P. aeruginosa.

      Bacterial pathogens are among the priority microbial fishborne hazards, and the carriage of antimicrobial resistance (AMR) by these bacteria or other fish microbiota adds a further dimension to their importance. According to the World Health Organization (WHO), antimicrobial resistance is among the top 10 global public health threats (WHO, 2021b). The development and spread of AMR is propagated by the use of antibiotics for growth promotion and prophylactic measures. Regular monitoring and surveillance of antibiotic-resistant bacteria that contaminate foods may help to track the cause of foodborne diseases and lead to appropriate safety policy for interventions, prevention and/or effective treatment of foodborne diseases. Bacteria species belonging to the Enterobacteriaceae family are included in AMR surveillance programmes worldwide. Previous studies have shown that foodborne pathogens isolated from fish could be resistant to various antibiotics, including methicillin (Sergelidis et al., 2014). Fish may potentially facilitate the spread of antimicrobial resistance determinants to other bacteria species through horizontal gene transfer, thus making them a threat to public health and safety (Walsh et al., 2008).

      Multidrug resistance (MDR) has increased all over the world and is considered a public health threat (Catalano et al., 2022). Several recent investigations reported the emergence of multidrug-resistant bacterial pathogens from different origins, which increases the necessity of the proper use of antibiotics, routine applications of the antimicrobial susceptibility testing to detect the antibiotic of choice, and screening of emerging MDR strains (Abolghait et al., 2020; Algammal et al., 2020; Algammal et al., 2022). MDR in bacteria may be generated by several mechanisms. First, bacteria may accumulate multiple genes—each coding for resistance to a single drug—within a single cell, and this accumulation typically occurs on resistance (R) plasmids. Moreover, multidrug resistance may also occur due to the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs (Catalano et al., 2022). Finally, MDR can be developed by enzymatic inactivation of the drugs through their degradation or by transfer of a chemical group to them (Reygaert, 2018). Microbial virulence factors are molecules produced by pathogenic microorganisms and have the ability to evade their host defenses and cause disease. These molecules range from secreted products such as enzymes, toxins, and exopolysaccharides, to cell surface structures such as lipopolysaccharides, capsules, lipoproteins, and glycoproteins. Some secreted molecules can manipulate the host cell machinery and hence cause infection (Jorge, 2020).

      Given the widespread consumption of O. niloticus in urban communities in Kenya, there is a need to conduct a surveillance study to determine the safety of O. niloticus consumed. To the best of our knowledge, this is the first study to evaluate the bacterial contamination of O. niloticus fish in Kenya with emphasis on Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus. Therefore, this study aimed to determine the prevalence of foodborne bacterial pathogens in retailed fresh O. niloticus fish in markets in Nairobi, Kenya. It also examined the antibiotic resistance of the isolated bacteria species and determined the genetic diversity of MDR bacteria. The findings provide prerequisite information supporting the need for control and prevention of outbreaks associated with exposure to the pathogenic bacteria in Kenya.

      Materials and methods Study site and sample collection

      This study was conducted in fresh retail markets of Nairobi County, Kenya. Fresh O. niloticus fish samples (n = 68) were collected from markets in five sub-counties, namely Kasarani (n = 14), Makadara (n = 14), Westlands (n = 14), Embakasi (n = 13) and Lang’ata (n = 13). The O. niloticus fish samples were randomly collected from different retail markets within the five sub-counties. The fish samples were collected and packaged by the retailer in sterile, transparent, ziplock polypropylene bags and were transported in ice boxes to the microbiology laboratory at the Department of Biochemistry, University of Nairobi, within 1 hour of purchase, and analysis was conducted within 3 hours of collection.

      Isolation and identification of bacterial pathogens

      O. niloticus fish samples were aseptically dissected to obtain tissue samples (flesh and gills) and were prepared for bacteriological examination according to the ISO 6887-3:2003 standard (ISO standard 6887, 2003). The samples were homogenized and subjected to analysis of Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus.

      Vibrio spp.: The homogenate was inoculated in 6 ml of alkaline peptone water (APW), pH 8.6, for enrichment, and incubated at 37°C for 8 hours. Two loopfuls of APW from the surface and topmost portion of the broth were inoculated on CHROMagar™ Vibrio (CHROMagar, Paris, France). Characteristic green-blue to turquoise blue (V. cholerae) and mauve colonies (V. parahaemolyticus) were picked and purified on thiosulfate-citrate-bile-salts-sucrose agar (Oxoid, Thermo Fischer Scientific, Lenexa, United States) with incubation at 37°C for 2 hours. The suspected colonies were re-streaked on tryptone soy agar (Oxoid, Thermo Fischer Scientific) supplemented with 3% sodium chloride (TSA + 3% NaCl) and incubated at 37°C for 2 hours to obtain pure isolates. The suspected V. parahaemolyticus colonies were confirmed by API 32E and VITEK 2 Compact, and later by halotolerance test with different concentrations of NaCl.

      S. aureus: The homogenate was inoculated on Baird-Parker agar and incubated at 37°C for 48 hours. Staphylococcus isolates were detected using the ISO6888-3:2003 + AC: 2005 method (ISO Standard 6888, 2003). Characteristic gray-black colonies with a halo were picked and sub-cultured on mannitol salt agar plates to obtain pure cultures. The coagulase-positive colonies obtained were then confirmed using API Staph and VITEK 2 Compact for Gram-positive bacteria.

      Proteus spp.: A 1 ml aliquot of the homogenate was inoculated on blood agar (HiMedia, Mumbai, India) and incubated at 28°C for 24 hours. The colonies were inoculated into 5 ml tryptose soya broth (TSB; HiMedia, Mumbai, India) in falcon tubes and incubated at 27°C for 24 hours. The inocula were streaked on xylose lysine deoxycholate Agar (XLD) and MacConkey agar (HiMedia, Mumbai, India) plates. The presumptive colonies of Proteus spp. with black colonies on XLD and pale or colorless colonies on MacConkey agar were selected.

      P. aeruginosa: A 1 ml homogenate was inoculated in nutrient broth for enrichment and incubated at 37°C for 24 hours followed by culturing on pseudomonas cetrimide agar (PCA) (Labobasi, Mendrisio, Switzerland) plates (as selective media culture) and incubated at 37°C for 24 hours. Green-blue-pigmented colonies were considered colonies suspected of containing the Pseudomonas genus. Biochemical tests, including fermentation of lactose, indole, citrate, and oxidase, and hemolysis in blood, were performed to confirm P. aeruginosa. Colonies containing lactose-negative, citrate-positive, indole-negative, oxidase-positive and hemolytic bacteria were identified as P. aeruginosa.

      Antimicrobial resistance testing

      The antimicrobial resistance test was performed using the Kirby–Bauer disk diffusion method (Mohamed et al., 2019) according to the guidelines of the Clinical Laboratory Standards Institute (CLSI, 2018). Sterile glass rods were used to streak the entire surface of Mueller–Hinton agar plates and antibiotic discs were applied aseptically on the Mueller–Hinton and incubated for 18 hours at 37°C using an antibiotic dispenser (Mast Diagnostics, UK). The antibiotic discs were used to determine the resistance patterns of the isolates against 11 selected antibiotics ( Table 1 ). Bacterial isolates were classified as resistant (R), intermediate (I), or susceptible (S) by measurement of inhibition zone diameters as per the criteria of CLSI, 2021. The tested isolates were classified as MDR and XDR as described by Magiorakos et al. (2012).

      List of antibiotics used to determine the antibiotic resistance patterns of the bacterial isolates.

      Categories Class of antibiotics Sub-classes of antibiotics Antibiotics
      Cell wall inhibiting and disrupting membrane antibiotics β-lactams Penicillins Natural penicillins Penicillin-G (PEN, 10 µg)
      Aminopenicillins Ampicillin/Cloxacillin (AX, 10 µg)
      Cephalosporins Third generation Ceftazidime (CAZ, 30 µg),
      Cefpodoxime (CPD, 10 µg),
      Fourth generation Cefepime (CPM, 30 µg),
      Carbapenems Meropenem (MRP, 10 µg),
      Glycopeptides Vancomycin (VAN, 30 µg)
      Nucleic acids inhibiting antibiotics Inhibiting RNA synthesisantibiotics Rifamycins Rifampicin (RIF, 5 µg)
      DNA inhibitors antibiotics Nitrofurans Nitrofurantoin (NIT, 300 µg)
      Protein synthesis inhibiting antibiotics 30S sub-unit inhibitors Aminoglycosides Streptomycin (STR, 10 µg)
      Phenolic derivatives Chloramphenicol (CHL, 50 µg)
      Sequencing of 16S rRNA gene in confirmed MDR bacteria isolates

      Sequencing of the 16S rRNA gene of the MDR bacterial isolates was performed and the isolates identified by BLASTn and phylogenetic analysis. Bacterial DNA was extracted using a DNA extraction kit (Qiagen, Hilden, Germany), as per manufacturer’s instructions. The extracted DNA was used as a template for PCR amplification of the 16S rRNA gene using 27F 5′-GAGTTTGATCCTGGCTCA-3′ and 1492R 5′-TACGGCTACCTTGTTACGACTT-3′ oligonucleotide primers (Fontana et al., 2005). A total of 50 μl reaction mixture was prepared with 2 μl of template DNA (100 ng/μl), 0.5μl each of forward and reverse primer pair, 25 μl of GoTaq Green Master Mix (Promega, Madison, United States), and nuclease-free water up to 50 μl. The PCR products were resolved by gel electrophoresis on 1.5% (w/v) agarose gel (Qiagen, Hombrechtikon, Switzerland). The gels were viewed under a gel imager (Bio-Rad Gel Doc XR System, United States). A QIAquick kit (Qiagen, Hilden, Germany) was used to purify amplicons according to the manufacturer’s instructions, and they were sequenced using the Sanger sequencing method (Macrogen, Netherlands). The nucleotide sequences were edited, assembled, and compared with those in the GenBank using BLASTn searches (Altschul et al., 1997) for identification of the bacteria. A phylogenetic tree was constructed with closely related GenBank sequences using the Bayesian inference method (MrBayes software v3.2.7; https://nbisweden.github.io/MrBayes/).

      Molecular detection of the inherited antimicrobial resistance genes

      Genomic DNA of MDR bacterial isolates were used for PCR amplification of the antibiotic resistance genes. The PCR reaction mixture consisted of 12.5 μl GoTaq Green Master Mix (Promega, United States), 1 μl DNA extract (50 ng/µl), and 0.5 μl each of the forward and reverse primer pair, and was topped up with nuclease-free water to 25 μl. PCR cycling conditions and primer sequences are shown in Table 2 . The reaction was done using a ProFlex PCR system (Applied Biosystems™, United States). The primers used were β-lactamase-encoding genes (blaTEM-1 and blaCMY-2), tetracycline-resistant genes (tetA and tetC), sulfonamide-resistant genes (sul2), trimethoprim-resistant genes (dfrA7), and aminoglycoside-resistant genes (strA and aadA) for antibiotics ( Supplementary Table S1 ). The PCR products were resolved by electrophoresis on a 1.5% (w/v) agarose gel with 1× Tris-HCl-EDTA (TE) buffer and then allowed to run for 1 hour at 100 V. The gels were viewed under a gel imager (Bio-Rad Gel Doc XR System, United States) and photographed.

      Bacterial pathogen prevalence among fresh O. niloticus fish samples from different markets of five sub-counties in Nairobi.

      Sub-county Collected samples, N Positive for bacterial pathogens, N (%)
      Proteus spp. S. aureus P. aeruginosa V. cholerae V. parahaemolyticus
      Kasarani 14 7 (50) 3 (21.43) 0 (0) 1 (7.14) 1 (7.14)
      Makadara 14 6 (42.86) 0 (0) 0 (0) 0 (0) 0 (0)
      Westlands 14 6 (42.86) 4 (28.57) 0 (0) 1 (7.14) 1 (7.14)
      Embakasi 13 5 (38.46) 0 (0) 3 (23.08) 0 (0) 0 (0)
      Lang’ata 13 6 (46.15) 0 (0) 0 (0) 0 (0) 0 (0)
      Total 68 30 (44.12) 7 (10.29) 3 (4.41) 2 (2.94) 2 (2.94)
      Multiple antibiotic resistance among isolated bacteria

      The multiple antibiotic resistance genotypes (MARGs) patterns of established pathogens with multiple resistance genes were analyzed as described by Titilawo et al. (2015). Multiple antibiotic-resistant phenotypes (MARPs) for each sampling site were generated for isolates that showed resistance to more than three classes of antibiotics following the method described by Wose et al. (2010).

      Statistical analysis

      Statistical analysis was performed using Minitab v17.1 statistical software (Minitab, LLC). The chi-squared test was used to test differences. Significance tests were considered statistically significant when p values were < 0.05. Correlation coefficient was performed using Microsoft Excel 2016 (Microsoft Corporation).

      Results Prevalence of bacterial isolates in fresh Nile tilapia samples from retail markets

      The prevalence and contamination rates of Proteus spp. ranged from 38.46% to 50% and S. aureus ranged from 0% to 28.57% for the five different sub-counties under study. P. aeruginosa was detected in fish samples from only Embakasi sub-county, with a prevalence of 23.08%. With regards to V. cholerae and V. parahaemolyticus, prevalence of 7.14% was obtained from fish samples collected from two sub-counties, Kasarani and Westlands ( Table 3 ). Overall, Proteus spp. (44.12%) was the most prevalent bacterial pathogen followed by S. aureus (28.57%) and P. aeruginosa (23.08%). The least prevalent bacterial pathogens were V. cholerae and V. parahaemolyticus (7.14%) ( Table 2 ).

      Phenotypic resistance pattern of Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus to 11 antimicrobial agents.

      Antimicrobial class Antibiotics Bacteria isolates
      Proteus spp. (n = 30) S. aureus (n = 7) P. aeruginosa (n = 3) V. cholerae (n = 2) V. parahaemolyticus (n = 2)
      R I S R I S R I S R I S R I S
      Penicillin PEN 33.3 40 26.7 57.1 42.9 0 100 0 0 100 0 0 100 0 0
      Glycopeptides VAN 70 6.7 23.3 71.4 28.6 0 100 0 0 100 0 0 100 0 0
      Rifamycins RIF 73.3 16.7 10 100 0 0 66.7 33.3 0 0 100 0 50 50 0
      β-lactam AX 70 26.7 3.3 100 0 0 66.7 33.3 0 100 0 0 100 0 0
      Cephalosporin (fourth) CPM 0 6.7 93.3 0 28.6 71.4 0 66.7 33.3 0 0 100 0 0 100
      Cephalosporin (third) CPD 50 20 30 85.7 14.3 0 33.3 66.7 0 100 0 0 0 100 0
      Phenicol CHL 10 10 80 0 14.3 85.7 0 0 100 50 50 0 0 0 100
      Nitrofuran NIT 6.7 33.3 60 14.3 14.3 71.4 0 33.3 66.7 50 50 0 0 0 100
      Cephalosporin (third) CAZ 13.3 16.7 70 71.4 28.6 0 100 0 0 0 100 0 0 0 100
      Carbapenems MRP 36.7 0 63.3 100 0 0 100 0 0 0 0 100 50 0 50
      Aminoglycosides STR 60 20 20 28.6 42.9 28.6 100 0 0 100 0 0 50 50 0
      Mean 38.5 17.9 43.6 57.1 19.5 23.4 60.6 21.2 18.2 54.5 27.3 18.2 40.9 18.2 40.9

      PEN, penicillin-G (10 µg); VAN = vancomycin (30 µg); RIF, rifampicin (5 µg); AX, ampicillin/cloxacillin (10 µg); CPM, cefepime (30 µg); CPD, cefpodoxime (10 µg); CHL, chloramphenicol (50 µg); NIT, nitrofurantoin (300 µg); CAZ, ceftazidime (30 µg); MRP, meropenem (10 µg); STR, streptomycin (10 µg); R, resistant; I, intermediate; S, sensitive.

      Antibiotic susceptibility testing according to the species of isolated bacteria

      The distribution of antimicrobial resistance pattern of Proteus spp., S. aureus, P. aeruginosa, V. cholerae and V. parahaemolyticus is presented in Table 3 . None of the bacterial isolates from the 5 different bacterial pathogens were resistant to cefepime (fourth-generation cephalosporin). The antibiotic resistance profile among the Proteus species isolates demonstrated varying levels of resistance against the 11 antibiotics. The highest level of resistance was observed for rifampicin (73.3%) followed by vancomycin and ampicillin/cloxacillin (70%), streptomycin (60%), and cefpodoxime (50%). With regard to S. aureus, the antibiotics with the highest resistance rates were rifampicin, ampicillin/cloxacillin, and meropenem (100%) followed by cefpodoxime (85.7%), vancomycin and ceftazidime (71.4%), and penicillin-G (57.1%). In P. aeruginosa, all the isolates were resistant to penicillin-G and vancomycin (100%) followed by ceftazidime, meropenem, and streptomycin (66.7%), and cefpodoxime (33.3%), but were not resistant to any of the remaining antibiotics (cefepime, chloramphenicol, and nitrofurantoin). For V. cholerae, 100% were resistant to penicillin-G, vancomycin, ampicillin/cloxacillin, cefpodoxime, and streptomycin. For V. parahaemolyticus, 100% were resistant to penicillin-G, vancomycin, and ampicillin/cloxacillin. Intermediate percentages ranged from 6.7% to 100% ( Table 3 ). No resistance to chloramphenicol was noted for any of the bacterial pathogens except Proteus species isolates.

      Multidrug-resistant patterns of bacterial isolates

      The MDR, XDR, and MAR index distribution of bacterial isolates is presented in Table 4 . Multidrug resistance was present among all five bacterial pathogens ( Table 4 ). As revealed by the antibiogram typing, Proteus spp. (56.7%), S. aureus (71.4%), P. aeruginosa (33.3%), V. cholerae (100%) and V. parahaemolyticus (100%) were multidrug resistant. XDR was expressed only in Proteus spp. (23.3%), S. aureus (28.6%), and P. aeruginosa (66.7%). No PDR was expressed by the tested bacterial isolates. Among the antibiogram types, PEN-VAN-RIF-AX-CPD-MRP-STR showed the highest prevalence (23.3%, seven isolates) in Proteus spp., with MAR of 0.64. A total of 6.7% of Proteus spp. were resistant to three antibiotics (VAN, RIF, AX) which belonged to three different groups of antimicrobials with a MAR index of 0.27. A total of 1/7 (14.3%) S. aureus were resistant to four antibiotics (RIF, AX, CPD, MRP) which belonged to four different groups of antimicrobials with a MAR index of 0.36. Furthermore, 2/7 (28.6%) S. aureus were resistant to seven antibiotics (PEN, VAN, RIF, AX, CPD, CAZ, MRP) which belonged to six different groups of antimicrobials with a MAR index of 0.64. A total of 1/3 (33.3%) P. aeruginosa were resistant to six antibiotics (PEN, VAN, CPD, CAZ, MRP, STR) which belonged to five different groups of antimicrobials with a MAR index of 0.55. Furthermore, 2/3 (66.7%) of P. aeruginosa were resistant to seven antibiotics (PEN, VAN, RIF, AX, CAZ, MRP, STR) which belonged to seven different groups of antimicrobials with a MAR index of 0.64. V. cholerae showed a different MDR pattern (PEN, VAN, AX, CPD, CHL, STR and PEN, VAN, AX, CPD, NIT, STR) but with similar MAR index (0.55). A total of 1/2 (50%) V. parahaemolyticus were resistant to four antibiotics (PEN, VAN, RIF, AX) which belonged to four different groups of antimicrobials with a MAR index of 0.36. Furthermore, 1/2 (50%) V. parahaemolyticus were resistant to five antibiotics (PEN, VAN, AX, MRP, STR) which belonged to four different groups of antimicrobials with a MAR index of 0.45 ( Table 4 ). Overall, diverse patterns of resistance to different classes of antibiotics were observed among Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus isolates ( Table 4 ).

      Distribution of multiple antibiotic resistances in Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus.

      Microorganism Number of antimicrobial class Number of antibiotics Resistance phenotypes MDR prevalence (%) XDRPrevalence (%) MAR index
      Proteus spp. (n = 30)
      3 3 VANR, RIFR, AXR 2 (6.7) 0.27
      4 4 VANR, AXR, CHLR, STRR 2 (6.7) 0.36
      4 4 RIFR, AXR, CHLR, STRR 1 (3.3) 0.36
      4 4 PENR, VANR, RIFR, CPDR 1 (3.3) 0.36
      4 4 VANR, RIFR, AXR, CPDR 1 (3.3) 0.36
      4 4 RIFR, CPDR, NITR, STRR 1 (3.3) 0.36
      4 4 RIFR, AXR, MRPR, STRR 1 (3.3) 0.36
      5 5 VANR, RIFR, CPDR, NITR, STRR 1 (3.3) 0.45
      5 5 VANR, RIFR, AXR, MRPR, STRR 3 (10) 0.45
      4 5 VANR, RIFR, AXR, CPDR, CAZR, 2 (6.7) 0.45
      7 7 PENR, VANR, RIFR, AXR, CPDR, MRPR, STRR 7 (23.3) 0.64
      6 7 PENR, VANR, RIFR, AXR, CPDR, CAZR, STRR 2 (6.7) 0.64
      17 (56.7) 7 (23.3)
      S. aureus (n = 7)
      4 4 RIFR, AXR, CPDR, MRPR 1 (14.3) 0.36
      5 6 PENR, RIFR, AXR, CPDR, CAZR, MRPR 1 (14.3) 0.55
      5 6 VANR, RIFR, AXR, CPDR, CAZR, MRPR 1 (14.3) 0.55
      7 7 PENR, VANR, RIFR, AXR, CPDR, MRPR, STRR 1 (14.3) 0.64
      7 7 VANR, RIFR, AXR, NITR, CAZR, MRPR, STRR 1 (14.3) 0.64
      6 7 PENR, VANR, RIFR, AXR, CPDR, CAZR, MRPR 2 (28.6) 0.64
      5 (71.4) 2 (28.6)
      P. aeruginosa (n = 3)
      5 6 PENR, VANR, CPDR, CAZR, MRPR, STRR 1 (33.3) 0.55
      7 7 PENR, VANR, RIFR, AXR, CAZR, MRPR, STRR 2 (66.7) 0.64
      1 (33.3) 2 (66.7)
      V. cholerae (n = 2)
      6 6 PENR, VANR, AXR, CPDR, CHLR, STRR 1 (50) 0.55
      6 6 PENR, VANR, AXR, CPDR, NITR, STRR 1 (50) 0.55
      2 (100)
      V. parahaemolyticus (n = 2)
      4 4 PENR, VANR, RIFR, AXR 1 (50) 0.36
      4 5 PENR, VANR, AXR, MRPR, STRR 1 (50) 0.45
      2 (100)

      PEN, penicillin-G (10 µg); VAN, vancomycin (30 µg); RIF, rifampicin (5 µg); AX, ampicillin/cloxacillin (10 µg); CPM, cefepime (30 µg); CPD, cefpodoxime (10 µg); CHL, chloramphenicol (50 µg); NIT, nitrofurantoin (300 µg); CAZ, ceftazidime (30 µg); MRP, meropenem (10 µg); STR, streptomycin (10 µg). MDR, multidrug resistance; XDR, extensive drug resistance;

      MAR, multiple antibiotic resistance index. MDR represents non-susceptible to ≥1 agent in ≥3 antimicrobial categories, while XDR represents non-susceptible to ≥1 agent in all but ≤2 categories.

      Identification of MDR bacteria using BLASTn analysis

      The sequences of 16S rRNA genes of MDR isolates of bacterial pathogens were compared with strains in the GenBank to determine the degree of similarity between them and closely related genotypes. BLASTn results revealed the percentage of similarity between MDR isolates and closely related bacteria in the GenBank ( Supplementary Table S2 ). The 16S rRNA 1465 bp amplicon sequences were registered in GenBank and the accession numbers are provided in Supplementary Table S2 . From the 16S rRNA sequences, BLASTn analysis showed the four MDR Vibrio isolates belonged to V. cholerae (accession numbers OP293360.1 and OP293361.1) and V. parahaemolyticus (accession numbers OP293358.1 and OP293359.1). Using BLASTn analysis and the globally published NCBI database, three MDR isolates of Pseudomonas were confirmed as P. aeruginosa, seven MDR isolates of Staphylococcus were confirmed as S. aureus, and three Proteus spp. were confirmed as P. mirabilis and other Proteus spp. ( Supplementary Table S2 ). The accession numbers of the MDR and XDR bacterial isolates for the current study are presented in Supplementary Table S2 .

      Phylogenetic analysis

      Phylogenetic analysis of 16S rRNA sequences of the MDR bacterial isolates showed distinct clustering and each phylogenetic tree had the same respective nodes showing that they evolved from the same ancestor.

      <italic>Proteus</italic> species

      Based on 16S rRNA sequencing and subsequent BLAST analysis, all strains shared more than 96% sequence homology with different types of strains of the genus Proteus. Out of the 18 Proteus spp. isolates, three (accession numbers OP293367.1, OP293368.1, and OP293369.1) shared more than 98% similarity with Proteus mirabilis 16S rRNA gene sequences obtained on the NCBI ( Figure 1 ). Other Proteus spp. (accession numbers OP047928.1 and OP047929.1) shared 84% similarity with Proteus penneri. The isolates EM33 (OP047945.1) and L-36 (OP047947.1) had similar sequence identity although the isolates were obtained from different locations.

      Phylogenetic tree built by MrBayes v3.2.7 using 14 16S rRNA sequences of the genus Proteus. New isolates P. mirabilis strains, Mak-38, Emb-43, and Lan-46, and Proteus spp. strains Ks-19, Ks-20, Ks-23, Mk-24, Mk-25, Mk-27, Mk-28, Em30, Em33, L-34, L-36, Wt1, Wt2, Wt7, and Wt8 are shown in red. Numbers indicated on the nodes are percent posterior probabilities showing statistical support for each node. Branches are colored based on percent posterior probabilities. The scale bar below the tree indicates the number of expected changes (or substitutions) per site. The Bacillus altitudinis strain GOES12 (OL851791.1) was used as an outgroup in the phylogenetic tree.

      <italic>Staphylococcus aureus</italic>

      In the neighbour-joining phylogenetic trees based on 16S rRNA gene sequences, the MDR isolates formed clades with the related strains from the database. All seven isolates shared nodes, with bootstrap values ranging from 87% to 100% ( Figure 2 ). All seven isolates were closely related to S. aureus strains in the databases and thus were identified as S. aureus.

      Phylogenetic tree built by MrBayes v3.2.7 using 17 16S rRNA sequences of S. aureus species. New isolates S. aureus strains Wes-03, Wes-10, Wes-11, Wes-13, Kas-15, Kas-17, and Kas-18 are shown in red. Numbers indicated on the nodes are percent posterior probabilities showing statistical support for each node. Branches are colored based on percent posterior probabilities. The scale bar below the tree indicates the number of expected changes (or substitutions) per site. The P. aeruginosa strain PB3A (KF029593.1) was used as an outgroup in the phylogenetic tree.

      <italic>Pseudomonas aeruginosa</italic>

      Based on the phylogenetic analysis using 16S rRNA, the three MDR isolates of P. aeruginosa exhibited a high degree of similarity with one another, with similarity percentages between 98.5% and 100%. P. aeruginosa strains Emb-40 and Emb-41 had similar identity although they were obtained from different markets at the same location ( Figure 3 ).

      Phylogenetic tree built by MrBayes v3.2.7 using 21 16S rRNA sequences of P. aeruginosa species. New isolates P. aeruginosa strains Emb-40, Emb-41, and Emb-42 are shown in red. Numbers indicated on the nodes are percent posterior probabilities showing statistical support for each node. Branches are colored based on percent posterior probabilities. The scale bar below the tree indicates the number of expected changes (or substitutions) per site.

      <italic>Vibrio</italic> species

      A phylogenetic tree of 16S rRNA sequences showed that all the tested samples were grouped into two main clusters. Each of the two species identified, V. cholerae and V. parahaemolyticus, clustered separately ( Figure 4 ).

      Phylogenetic treebuilt by MrBayes v3.2.7using 10 and 8 16S rRNA sequences of V. cholerae and V. parahaemolyticus, respectively. New isolates V. cholerae strains Wes-14 and Kas-21, and V. parahaemolyticus strains Wes-06 and Kas-16 are shown in red. Numbers indicated on the nodes are percent posterior probabilities showing statistical support for each node. Branches are colored based on percent posterior probabilities. The scale bar below the tree indicates the number of expected changes (or substitutions) per site. The B altitudinis strain GOES12 (OL851791.1) was used as an outgroup in the phylogenetic tree.

      Detection of antimicrobial resistance genes by PCR

      PCR was used to determine the drug resistance genes of MDR isolates of the different bacterial pathogens. The distribution of antimicrobial-resistant genes among multidrug-resistant (MDR) Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus are presented in Table 5 . All the MDR isolates of the different bacteria species tested positive for blaTEM-1, blaCMY-2, Sul2, strA, aadA, tetA, tetC, and dfrA7. However, sul2 gene was not amplified in two S. aureus isolates (accession numbers OP293352.1 and OP293356.1). Supplementary Figure S1 shows a representative agarose gel of the amplification of Proteus spp., S. aureus, P. aeruginosa, V. cholerae and V. parahaemolyticus tested antibiotic-resistant genes. The correlation coefficient (r) was assessed between phenotypic and genotypic multidrug resistance in bacterial isolates. The results revealed significant positive correlations between: blaCMY-2 gene and tetA (r = 0.95), AX and strA gene (r = 0.93), PEN and blaCMY-2 gene (r = 0.91), aadA gene and tetC (r = 0.85), RIF and dfrA7 (r = 0.81), CAZ and aadA gene (r = 0.81), VAN and blaCMY-2 gene (r = 0.78), and CAZ and dfrA7 (r = 0.73) ( Figure 5 ).

      Distribution of antimicrobial-resistant genes in MDR isolates of the different bacteria pathogens.

      MDR isolates Antibiotic-resistant associated genes (%)
      tetA tetC blaTEM-1 blaCMY-2 sul2 dfrA7 strA aadA
      Proteus spp. (n = 22) 24 (100) 24 (100) 24 (100) 24 (100) 24 (100) 24 (100) 24 (100) 24 (100)
      S. aureus (n = 7) 7 (100) 7 (100) 7 (100) 7 (100) 5 (71.4) 7 (100) 7 (100) 7 (100)
      P. aeruginosa (n = 3) 3 (100) 3 (100) 3 (100) 3 (100) 3 (100) 3 (100) 3(100) 3 (100)
      V. cholerae (n = 2) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100)
      V. parahaemolyticus (n = 2) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100)
      Total (n = 36) 36 (100) 36 (100) 36 (100) 36 (100) 36 (94.4) 36 (100) 36 (100) 36 (100)

      tetA and tetC, tetracycline-resistant genes; blaTEM-1 and blaCMY-2, β-lactamases-encoding genes; sul2, sulphonamide-resistant gene; dfrA7, trimethoprim-resistant gene; strA, streptomycin-resistant gene; aadA, aminoglycoside-resistant gene.

      Heat map showing correlation coefficient (r) among the tested antibiotics and antibiotic resistance genes detected in bacterial isolates. The intensity of colors indicates the numerical value of the correlation coefficient (r). Red and blue colors refer to the negative and positive correlations, respectively. PEN, penicillin-G (10 µg); VAN, vancomycin (30 µg); RIF, rifampicin (5 µg); AX, ampicillin/cloxacillin (10 µg); CPM, cefepime (30 µg); CPD, cefpodoxime (10 µg); CHL, chloramphenicol (50 µg); NIT, nitrofurantoin (300 µg); CAZ, ceftazidime (30 µg); MRP, meropenem (10 µg); STR, streptomycin (10 µg). tetA and tetC = tetracycline-resistant genes, blaTEM-1 and blaCMY-2 = β-lactamases-encoding genes, sul2 = sulphonamide-resistant gene, dfrA7 = trimethoprim-resistant gene, strA = streptomycin-resistant gene, and aadA = aminoglycoside-resistant genes.

      Discussion

      In this study the prevalence of contamination of fresh O. niloticus fish by the selected foodborne pathogenic bacteria was investigated. In addition, the antibiotic resistance pattern of the isolates, the presence of resistant genes and the genetic diversity of the identified MDR resistant isolates of the pathogens was determined. The current study revealed the presence of Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus in fresh O. niloticus fish samples obtained from retail markets in Nairobi, Kenya. The presence of the bacterial contaminants is a reflection of the wide range of infections to which consumers of O. niloticus fish are exposed to, especially if the fish is undercooked prior to consumption. The presence in fish of some of these bacteria, such as Proteus spp. and S. aureus, have been reported to cause food poisoning outbreaks. The prevalence of Proteus spp. and S. aureus in the present study was 44.12% and 10.29%, respectively, which is within the range reported by previous studies from different countries (Kusunoki et al., 1998; Omoe et al., 2002; Saito et al., 2011; Bujjamma and Padmavathi, 2015). The current prevalence of Proteus spp. and S. aureus represents a major public health and economic burden for the country. The source of Proteus spp. and S. aureus in O. niloticus fish could be human contamination, as they are not part of the known bacterial flora of fish. The presence of Proteus spp. and S. aureus from O. niloticus in retail markets is due to unhygienic handling during processing, transportation, and storage (Titilawo et al., 2015). Thus, it is necessary for regulatory agencies to increase the robustness with which they monitor and enforce the microbial safety of fish and other fish products, and for vendors to strictly adhere to proper handling practices. It is also necessary to sensitize consumers to the need to ensure that they cook their fish well to allow for the removal of bacterial contaminants before consumption.

      P. aeruginosa is naturally found in aquatic environments. In the current study, the prevalence of P. aeruginosa (6.8%) was higher than in other studies reported for O. niloticus (5.1%) in Uganda (Wamala et al., 2018), and for salmon (1.1%), shrimp (0.9%), and O. niloticus (2.3%) (Tate et al., 2022). Marijani (2022) reported Pseudomonas spp. (1%) in marine and freshwater fish in Tanzania. Vibrio spp. are found in fish and fish environments and may be harmful to both wild and cultured fish (Gauthier, 2015). The findings of this study showed that Vibrio were the least prevalent, at 4.5%, which is lower than in studies by Wamala et al. (2018), where V. cholerae (12.8%) was reported in O. niloticus; V. parahaemolyticus (11.22%) in ready-to-eat foods, shrimp and fish in China (Xie et al., 2020). The presence of Vibrio in aquatic environments indicates contamination by human waste. V. parahaemolyticus is associated with human vibriosis and occurs mainly due to the ingestion of undercooked fish or fish products (Iwamoto et al., 2010; Callol et al., 2015).

      The rates of resistance of the various classes of antimicrobials agents used among the bacterial pathogens recovered in this study ranged from 0%–100%, with high-level resistance to ampicillin/cloxacillin, vancomycin and streptomycin. The high-level resistance to ampicillin, a derivative of penicillin, could be due to easy access to penicillin and its frequent use in aquaculture. Such resistant phenotypes indicate antibiotic failure, should these members of antibiotics be used in the treatment of any disease implicated by any of the characterized members of organisms. All bacterial isolates were sensitive to cefepime, which is a fourth-generation cephalosporin. Cefepime has higher activity against both Gram-positive and Gram-negative bacteria than third-generation cephalosporins and, because it is new to the market, it is possible that there is zero to low use in aquaculture farming in Kenya.

      Gram-negative bacteria use antibacterial resistance mechanisms such as drug efflux, inactivating drugs, limiting uptake of drugs, and modifying the drug target, unlike Gram-positive bacteria, which lack lipopolysaccharide in the outer membrane and hence cannot pump out drugs from their cell wall (Chancey et al., 2012; Mahon et al., 2014). The current study revealed that S. aureus was resistant to vancomycin, which is in agreement with a study by Reygaert (2018); however, the mechanism is yet to be explained. Previous studies indicate that the bacteria produce a thickened cell wall; hence, the drug cannot enter the cell and as a result it provides an intermediate resistance to vancomycin (Lambert, 2002; Miller et al., 2014). Formation of biofilm by pathogenic bacteria, e.g., P. aeruginosa, protects the bacteria from antimicrobial agents and the host immune system. Horizontal gene transfer is enabled by the proximity of the bacterial cells in biofilms and hence the transfer of antimicrobial resistance genes (Mah, 2012; Van Acker et al., 2014).

      The prevalence of antibiotic resistance for P. aeruginosa was highest in penicillin (100%), vancomycin (100%), ceftazidime (100%), meropenem (100%), and streptomycin (100%). The reported resistance is due to restricted outer membrane permeability of the antimicrobials, efflux systems that pump antimicrobials out of the cell, and synthesis of antibiotic-inactivating factors such as β-lactamases. The resistance of P. aeruginosa to the β-lactam antibiotics, including penicillin (first, second, and third generations) and cephalosporin (such as cefotaxime), is mainly attributed to the extended spectrum β-lactamases (ESBLs). blaCTX-M and blaTEM are the main extended spectrum β-lactamase genes that induce such type of resistance (Peymani et al., 2017). In addition, P. aeruginosa are capable of producing carbapenemase enzymes, which makes them resistant (Breidenstein et al., 2011). Furthermore, P. aeruginosa produces phenazine compounds, which are biologically active substances involved in bacterial competitiveness and virulence in both human and animal hosts (Mavrodi et al., 2001). The outer membrane proteins (L-lipoproteins) of P. aeruginosa are associated with bacterial resistance to antiseptics and antibiotics (Nikbin et al., 2012).

      The prevalence of antibiotic-resistant V. parahaemolyticus is an important concern for public human health and veterinary medicine (Zanetti et al., 2001; de Melo et al., 2011; Sudha et al., 2014). High level of resistance of V. parahaemolyticus isolates to penicillin (100%), vancomycin (100%), ampicillin/cloxacillin (100%), meropenem (50%), and streptomycin (50%) was reported in this study; however, the isolates were sensitive to third- and fourth-generation cephalosporins, such as cefepime, cefpodoxime, nitrofurantoin, and ceftazidime. These findings are similar to reports from Korea and Malaysia that revealed high levels of resistance of V. parahaemolyticus to penicillin, vancomycin, ampicillin/cloxacillin, meropenem, and streptomycin (Jun et al., 2012; Kang et al., 2017; Tan et al., 2017). V. cholerae also showed high resistance to penicillin (100%), vancomycin (100%), ampicillin/cloxacillin (100%), and streptomycin (100%), and this is similar to previous studies by Das et al. (2020). Penicillins, including ampicillin, are the most commonly used antibiotic agents in aquaculture and therefore our results suggest that penicillins should not be used for clinical treatment of V. parahaemolyticus infections, whereas third- and fourth-generation cephalosporins are still useful for treatment. Other types of treatment that would play a role in reducing the prevalence of Vibrio spp. include low-temperature treatment, use of saline, and ultrasound (Zhou et al., 2002). The use of sugar, lemon juice, citric acid, or vinegar has also been linked with decreased contamination with Vibrio spp. in fish and shellfish (Borazjani et al., 2003; Ibrahim et al., 2018). Marinating fish prior to consumption is an additional method that can be used to reduce contamination with Vibrio spp.

      S. aureus is widespread in the environment and in the human body. S. aureus infections, especially the one caused by methicillin-resistant S. aureus strains (MRSA), are a threat to public health due to the emergence of multidrug-resistant strains (Kaplan et al., 2005). Most of the isolates in this study showed resistance to penicillin, vancomycin, rifampicin, cefpodoxime, ceftazidime, ampicillin/cloxacillin, and meropenem, whereas levels of resistance to nitrofurantoin and streptomycin were lower. Moreover, none of the isolates were resistant to cefepime and chloramphenicol. Currently, vancomycin is the drug of choice for the treatment of S. aureus infections. In the current study 71.4% of S. aureus isolates were resistant to vancomycin, and this could be an alert for the emergence of multidrug-resistant S. aureus infections, especially after the consumption of undercooked fish.

      Multidrug-resistant foodborne bacteria pathogens are a major public health and economic concern worldwide. The presence of MDR bacteria in fresh O. niloticus fish in the current study is a cause for worry for several reasons. Undercooked fish could expose consumers to colonization by and infection with these MDR bacteria. This has the potential for dissemination of the resistance genes from MDR bacterial pathogens to the microbiota with which they co-colonize the gut (Duedu et al., 2017). It is also possible that the resistance traits could be transferred to other microorganisms in circulation when colonized persons shed them in fecal matter. MDR bacteria could also spread from fish markets to hospital environments through cockroaches and other insects, and other vehicles for transmission of foodborne pathogens (Tetteh-Quarcoo et al., 2013; Futagbi et al., 2017; Donkor, 2019; Obeng-Nkrumah et al., 2019). The risk of transmission could be pronounced in cases of close proximity between markets and healthcare facilities. These pathogens could be disseminated further in the hospital facilities and negatively impact disease outcomes of patients and healthcare costs (Tetteh-Quarcoo et al., 2013; Obeng-Nkrumah et al., 2015; Tette et al., 2016; Donkor et al., 2018; Donkor and Kotey, 2020). Continued research on the antibiotic resistance of pathogenic bacteria that infect fish is needed because it is essential for controlling the occurrence of multidrug-resistant bacteria and for the selection of appropriate therapeutic agents. The high percentage of MDR S. aureus in the current study is slightly higher than in a previous study conducted in Egypt (Badawy et al., 2022) where 83.3% of S. aureus isolates were MDR.

      This study was, to the best of our knowledge, the first to calculate and report the MAR index for Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus isolated from fresh O. niloticus fish. The MAR index ranged from 0.27–0.64, indicating that all the isolates have repeatedly been exposed to antibiotics. All the bacteria pathogens tested in the present study showed a MAR index of more than 0.2, indicating a high risk of contamination that is potentially harmful to human health (Tanil et al., 2005). The dissemination of these resistant clones can pose serious public health problems. The MAR index results suggest that bacteria (Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus) isolated from O. niloticus fish can contribute significantly to the spread of multidrug resistance and antibiotic resistance genes to consumers. The findings of the current study are in line with previous studies conducted in Nigeria (Chigor et al., 2020) and Malaysia (Noorlis et al., 2011; Saifedden et al., 2016).

      The spread of antibiotic-resistant bacteria and antibiotic resistance genes is considered one of the most serious emerging threats to public health. An important factor in bacterial resistance to antimicrobials is that they carry related resistance genes (Iwu and Okoh, 2019; Iwu et al., 2020). To ascertain the resistant phenotypes, antibiotic-resistant gene profiles were conducted using the PCR method, which revealed the presence of resistance genes belonging to extended-spectrum β-lactamase, aminoglycoside resistance genes, aminoglycoside/streptomycin resistance genes, sulphonamide genes, and other β-lactamase resistance genes. There was a strong correlation between the phenotypic resistance pattern to the antibiotics for MDR bacteria and the presence of antibiotic resistance genes. However, only a few antibiotic resistance genes were selected for analysis in the study based on the antibiotic usage and previous reports from various regions of Kenya, although several types of antibiotics and their variants are used in the country. Therefore, the bacterial pathogens could contain other antibiotic resistance genes that were not included in this study. The need for routine surveillance/monitoring of potential pathogens in fish and fish products, including seafood in retail markets, remains a priority to ascertain the safety of these food products.

      Conclusion

      Our results show high prevalence of antimicrobial-resistant foodborne pathogens (Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus) in fish purchased from retail markets and underscore the risk associated with improper handling of fish. The MAR index results suggest that the bacteria (Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus) isolated from fish can contribute significantly to the spread of multidrug resistance and antibiotic resistance genes to consumers. Also, the presence of antibiotic resistance genes in Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus highlights the high risk to humans of exposure to resistant foodborne bacteria through consumption of undercooked fish.

      Studies comparing the bacterial species composition from point of harvest to processed product, for example using tracer bacteria with particular characteristics (e.g., antimicrobial resistance markers), are needed to determine to what extent the bacterial flora of fish change during processing. It is also necessary for regulatory agencies in the country to increase the robustness with which they monitor and enforce the microbial safety of fresh O. niloticus fish and other fish products, and for vendors to strictly adhere to good food-handling practices. There is also a need to sensitize consumers to the need to ensure that they cook fresh O. niloticus fish well to allow for the removal of contaminating bacteria prior to consumption.

      Data availability statement

      The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/ Supplementary Material .

      Ethics statement

      Ethical review and approval was not required for the non-live fish samples because it is not needed in accordance with the local legislation and institutional requirements.

      Author contributions

      MM, EN, JK, and EM conceptualized and designed the study. MM, EN, JK, EM, SM, HR, GM, BN, and JN contributed to methodolgy. MM and EN collected and analyzed data. EN and JN provided resources. MM prepared the first draft of the manuscript. MM, EN, JK, EM, SM, HR, GM, BN, and JN reviewed and edited the manuscript. All authors contributed to the article and approved the submitted version.

      Acknowledgments

      The authors acknowledge the Department of Biochemistry, University of Nairobi, for their support.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/frabi.2023.1156258/full#supplementary-material

      References Abolghait S. K. Fathi A. G. Youssef F. M. Algammal A. M. (2020). Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin b (SEB) in non-refrigerated raw chicken livers. Int. J. Food Microbiol. 2 (328), 108669. doi: 10.1016/j.ijfoodmicro.2020.108669 Acosta C. J. Galindo C. M. Kimario J. Senkoro K. Urassa H. Casals C. . (2001). Cholera outbreak in southern Tanzania: risk factors and patterns of transmission. Emerg. Infect. Dis. 7, 583587. doi: 10.3201/eid0707.017741 Addis M. Sisay D. A. (2015). Review on major food borne bacterial illnesses. J. Trop. Dis. 3, 17. Akbar A. Anal A. K. (2014). Occurrence of Staphylococcus aureus and evaluation of anti-staphylococcal activity of Lactococcus lactis subsp. lactis in ready-to-eat poultry meat. Ann. Microbiol. 64 (1), 131138. Algammal A. M. Mabrok M. Ezzat M. Alfifi K. J. Esawy A. M. Elmasry N. . (2022). Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture 548 (1), 737643. doi: 10.1016/j.aquaculture.2021.737643 Algammal A. M. Mabrok M. Sivaramasamy E. Youssef F. M. Atwa M. H. El-kholy A. W. . (2020). Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and bla TEM, bla CTX-m, and tetA antibiotic-resistance genes. Sci. Rep. 10, 15961. doi: 10.1038/s41598-020-72264-4 Altschul S. F. Madden T. L. Schäffer A. A. Zhang J. Zhang Z. Miller W. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402. doi: 10.1093/nar/25.17.3389 Ayman E. Eman M. Musaad A. Ihab M. Adil A. Mai I. . (2022). Pseudomonas species prevalence, protein analysis, and antibiotic resistance: an evolving public health challenge. AMB. Express. 12, 53. doi: 10.1186/s13568-022-01390-1 Badawy B. Mahmoud E. Alshimaa M. M. F. Samar M. M. Mohamed Z. S. A. Amira A. M. . (2022). Ecological distribution of virulent multidrug-resistant Staphylococcus aureus in livestock, environment, and dairy products. MDPI. Antibiotic. 11, 111651. doi: 10.3390/antibiotics11111651 Baliere C. Rince A. Blanco J. (2015). Prevalence and characterization of shiga toxin-producing and enteropathogenic Escherichia coli in shellfish-harvesting areas and their watersheds. Front. Microbiol. 6, 1356. doi: 10.3389/fmicb.2015.01356 Borazjani A. Andrews L. Veal C. (2003). Novel non-thermal methods to reduce Vibrio vulnificusin raw oysters. J. Food Saf. 23, 179187. doi: 10.1111/j.1745-4565.2003.tb00361.x Breidenstein E. B. de la Fuente-Nunez C. Hancock R. E. (2011). Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19, 419426. doi: 10.1016/j.tim.2011.04.005 Bricha S. Ounine K. Oulkheir S. Haloui N. Attarassi B. (2009). Virulence factors and epidemiology related to Pseudomonas aeruginosa . Tunis J. Infect. Dis. 2, 714. Bujjamma P. Padmavathi P. (2015). Prevalence of Staphylococcus aureus in fish samples of local domestic fish market. Int. J. Curr. Microbiol. App. Sci. 4 (5), 427433. Callol A. Pajuelo D. Ebbesson L. Teles M. MacKenzie S. Amaro C. (2015). Early steps in the European eel (Anguilla anguilla)-Vibrio vulnificus interaction in the gills: role of the RtxA13 toxin. Fish Shellfish Immunol. 43, 502509. doi: 10.1016/j.fsi.2015.01.009 Catalano A. Iacopetta D. Ceramella J. Scumaci D. Giuzio F. Saturnino C. . (2022). Multidrug resistance (MDR): a widespread phenomenon in pharmacological therapies. Molecules 27, 616. doi: 10.3390/molecules27030616 Chancey S. T. Zähner D. Stephens D. S. (2012). Acquired inducible antimicrobial resistance in gram-positive bacteria. Future Microbiol. 7, 959978. doi: 10.2217/fmb.12.63 Chigor V. Ibangha I. Chigor C. Titilawo Y. (2020). Treated wastewater used in fresh produce irrigation in nsukka, southeast Nigeria is a reservoir of enterotoxigenic and multidrug-resistant Escherichia coli . Cell Press 6 (4), e03780. doi: 10.1016/j.heliyon.2020.e03780 CLSI (2018). Performance standards for antimicrobial susceptibility testing. CLSI supplement M100 28th Edition. (Wayne, PA, USA: Clinical and Laboratory Standards Institute). CLSI (2021). M100. performance standards for antimicrobial susceptibility testing an informational supplement for global application developed through the clinical and laboratory standards institute consensus process Vol. 27 (Malvern, PA, USA: CLSI). Das B. Verma J. Kumar P. Ghosh A. Ramamurthy T. (2020). Antibiotic resistance in vibrio cholerae: understanding the ecology of resistance genes and mechanisms. Elsevier 38 (1), A83A92. doi: 10.1016/j.vaccine.2019.06.031 de Melo L. M. Almeida D. Hofer E. Dos Reis C. M. Theophilo G. N. Santos A. F. . (2011). Antibiotic resistance of Vibrio parahaemolyticus isolated from pond-reared Litopenaeus vannamei marketed in natal, Brazil. Braz. J. Microbiol. 42 (4), 14631469. doi: 10.1590/S1517-83822011000400032 Donkor E. S. (2019). Nosocomial pathogens: an in-depth analysis of the vectorial potential of cockroaches. Trop. Med. Infect. Dis. 4, 14. doi: 10.3390/tropicalmed4010014 Donkor E. S. Jamrozy D. Mills R. O. Dankwah T. Amoo P. K. Egyir B. . (2018). A genomic infection control study for Staphylococcus aureus in two ghanaian hospitals. Infect. Drug Resist. 11, 17571765. doi: 10.2147/IDR.S167639 Donkor E. S. Kotey F. C. N. (2020). Methicillin-resistant Staphylococcus aureus (MRSA) in the oral cavity: its implications for dental care and MRSA surveillance. Infect. Dis. Res. Treat. 13, 1178633720976581. Drzewiecka D. (2016). Significance and roles of Proteus spp. bacteria in natural environments. Microb. Ecol. 72, 741758. doi: 10.1007/s00248-015-0720-6 Duedu K. O. Offei G. Codjoe F. S. Donkor E. S. (2017). Multidrug resistant enteric bacterial pathogens in a psychiatric hospital in Ghana: implications for control of nosocomial infections. Int. J. Microbiol. 2017, 9509087. doi: 10.1155/2017/9509087 Fontana C. Favaro M. Pelliccioni M. Pistoia E. S. Favalli C. (2005). Use of the MicroSeq 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J. Clin. Microbiol. 43, 615619. doi: 10.1128/JCM.43.2.615-619.2005 Futagbi G. Koduah N. A. G. Ampah B. R. Mattah P. A. D. Billah M. Futse J. E. . (2017). Microbial carriage and contamination of mangoes by the oriental fruit fly. Open Public Health J. 10, 267275. doi: 10.2174/1874944501710010267 Gauthier D. T. (2015). Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet. J. 203, 2735. doi: 10.1016/j.tvjl.2014.10.028 Gong Z. Shi X. Bai F. He X. Zhang H. Li Y. . (2019). Characterization of a novel diarrheagenic strain of Proteus mirabilis associated with food poisoning in China. Front. Microbiol. 10, 2810. doi: 10.3389/fmicb.2019.02810 Hammad A. M. Watanabe W. Fujii T. Shimamoto T. (2012). Occurrence and characteristics of methicillin-resistant and-susceptible Staphylococcus aureus and methicillin resistant coagulase-negative Staphylococci from Japanese retail ready-to-eat raw fish. Int. J. Food Microbiol. 156, 286289. doi: 10.1016/j.ijfoodmicro.2012.03.022 Ibrahim H. M. Amin R. A. Ghanaym H. R. M. (2018). Effect of marination on Vibrio parahaemolyticus in tilapia fillets. Benha Vet. Med. J. 34, 234245. doi: 10.21608/bvmj.2018.29434 ISO 6887-3 (2003). Microbiology of food and animal feeding stuffs–preparation of test samples, initial suspension and decimal dilutions for microbiological examination–part 3: specific rules for the preparation of fish and fishery products Vol. 2003 (Geneva, Switzerland: International Organization for Standardization). ISO 6888-3 (2003). Microbiology of food and animal feeding stuffs–horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - 3: detection and MPN technique for low numbers Vol. 2003 (Geneva, Switzerland: International Organization for Standardization). Iwamoto M. Ayers T. Mahon B. E. Swerdlow D. L. (2010). Epidemiology of seafood-associated infections in the united states. Clin. Microbiol. Rev. 23, 399411. doi: 10.1128/CMR.00059-09 Iwu C. D. Korsten L. Okoh A. I. (2020). The incidence of antibiotic resistance within and beyond the agricultural ecosystem: a concern for public health. Microbiol. Open 9 (9), e1035. doi: 10.1002/mbo3.1035 Iwu C. D. Okoh A. I. (2019). Pre-harvest transmission routes of fresh produce associated bacterial pathogens with outbreak potentials: a review. Int. J. Environ. Res. Public Health 16, 4407. doi: 10.3390/ijerph16224407 Jorge H. L. (2020). Microbial Virulence Factors. Int. J. Mol. Sci. 21, 5320. Jun J. W. Kim J. H. Choresca C. H. Jr. Shin S. P. Han J. E. Han S. Y. (2012). Isolation, molecular characterization, and antibiotic susceptibility of Vibrio parahaemolyticus in Korean seafood. Foodborne Pathog. Dis. 9, 224231. doi: 10.1089/fpd.2011.1018 Kang C.-H. Shin Y. Jang S. Yu H. Kim S. An S. (2017). Characterization of Vibrio parahaemolyticus isolated from oysters in Korea: resistance to various antibiotics and prevalence of virulence genes. Mar. pollut. Bull. 118, 261266. doi: 10.1016/j.marpolbul.2017.02.070 Kaplan S. L. Hulten K. G. Gonzalez B. E. Hammerman W. A. Lamberth L. Versalovic J. . (2005). Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin. Infect. Dis. 40, 17851791. doi: 10.1086/430312 Kusunoki K. Ushioda H. Jin M. (1998). Results of bacterial contamination of commercial raw fish and shellfish in tama, tokyo (1986–1996). Japanese J. Food Microbiol. 15 (3-4), 161165. doi: 10.5803/jsfm.15.161 Lambert P. A. (2002). Cellular impermeability and uptake of biocides and antibiotics in gram- positive bacteria and mycobacteria. J. Appl. Microbiol. 92, 46S54S. doi: 10.1046/j.1365-2672.92.5s1.7.x Magiorakos A. P. Srinivasan A. Carey R. B. Carmeli Y. Falagas M. E. Giske C. G. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268281. doi: 10.1111/j.1469-0691.2011.03570.x Mah T. F. (2012). Biofilm-specific antibiotic resistance. Future Microbiol. 7, 10611072. doi: 10.2217/fmb.12.76 Mahon C. R. Lehman D. C. Manuselis G. (2014). “Textbook of diagnostic microbiology,” in Saunders; antimicrobial agent mechanisms of action and resistance(New York: Saunders), 254273. Marijani E. (2022). Prevalence and antimicrobial resistance of bacteria isolated from marine and freshwater fish in Tanzania. Int. J. Microbiol. 2022, 4652326. doi: 10.1155/2022/4652326 Mavrodi D. V. Bonsall R. F. Delaney S. M. Soule M. J. Phillips G. Thomashow L. S. (2001). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 64546465. doi: 10.1128/JB.183.21.6454-6465.2001 Miller W. R. Munita J. M. Arias C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infe 12, 12211236. doi: 10.1586/14787210.2014.956092 Mohamed S. M. N. Walaa A. H. Wafaa M. K. B. (2019). Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be? J. Egyptian Pub. Health Assoc. 94, 4. doi: 10.1186/s42506-018-0006-1 Nawaz M. A. Bhattarai R. R. (2015). Isolation and identification of yersinia and pseudomonas sp. from Australian milk and salad using 16S rDNA (No. e820v1). Peer J. 7, 17. doi: 10.7287/peerj.preprints.820v1 Nikbin V. S. Aslani M. M. Sharafi Z. Hashemipour M. Shahcheraghi F. Ebrahimipour G. H. (2012). Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iran. J. Microbiol. 4, 118. Noorlis A. Ghazali F. M. Cheah Y. K. Tuan-Zainazor T. C. Wong W. C. Tunung R. . (2011). Antibiotic resistance and biosafety of Vibrio cholerae and Vibrio parahaemolyticus from freshwater fish at retail level. Int. Food Res. J. 18 (4), 15231530. Novotny L. Dvorska L. Lorencova A. Beran V. Pavlik I. (2004). Fish: a potential source of bacterial pathogens for human beings. Vet. Med. 49 (9), 343358. doi: 10.17221/5715-VETMED Obande G. A. Umeh E. U. Azuza E. T. Aleruchi C. Adikwu P. (2017). Public health practices at meat pie retail points in markudi, benue state and its potential effect on consumer health. Afr. J. Clin. Exp. Microbiol. 18, 3541. doi: 10.4314/ajcem.v18i1.5 Obeng-Nkrumah N. Labi A. K. Acquah M. E. Donkor E. S. (2015). Bloodstream infections in patients with malignancies: implications for antibiotic treatment in a ghanaian tertiary setting. BMC Res. 8, 742. doi: 10.1186/s13104-015-1701-z Obeng-Nkrumah N. Labi A. K. Blankson H. Awuah-Mensah G. Oduro-Mensah D. Anum J. . (2019). Household cockroaches carry CTX-M-15-, OXA-48- and NDM-1-producing enterobacteria, and share beta-lactam resistance determinants with humans. BMC Microbiol. 19, 272. doi: 10.1186/s12866-019-1629-x Obiero K. O. Kyule D. Opiyo M. A. Abwao J. Kirimi J. G. Outa N. . (2022). Nile Tilapia (Oreochromis niloticus linnaeus 1758) culture in Kenya: emerging production technologies and socio-economic impacts on local livelihoods. Aqua. Fish Fisheries. 2, 265276. doi: 10.1002/aff2.58 Omoe K. Ishikawa M. Shimoda Y. Hu D. L. Ueda S. Shinagawa K. (2002). Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. J. Clin. Microbiol. 40 (3), 857862. Peymani A. Naserpour-Farivar T. Zare E. Azarhoosh K. (2017). Distribution of blaTEM, blaSHV, and blaCTX-m genes among ESBL-producing P. aeruginosa isolated from qazvin and Tehran hospitals, Iran. J. Prev. Med. Hygiene 58, E155. Reygaert W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4, 482501. doi: 10.3934/microbiol.2018.3.482 Saifedden G. Farinazleen G. Nor-Khaizura A. Kayali A. Y. Nakaguchi Y. Nishibuchi M. . (2016). Antibiotic susceptibility profile of vibrio parahaemolyticus isolated from shrimp in selangor, Malaysia. Int. Food Res. J. 23 (6), 27322736. Saito E. Yoshida N. Kawano J. Shimizu A. Igimi S. (2011). Isolation of Staphylococcus aureus from raw fish in relation to culture methods. J. Vet. Med. Sci. 73 (3), 287292. doi: 10.1292/jvms.10-0198 Sanches M. S. Baptista A. A. S. deSouza M. Menck-Costa M. F. Kobayashi R. K. T. Rocha S. P. D. (2019). Genotypic and phenotypic profiles of virulence factors and antimicrobial resistance of Proteus mirabilis isolated from chicken carcasses: potential zoonotic risk. Braz. J. Microbiol. 50, 685694. doi: 10.1007/s42770-019-00086-2 Schurmann D. Ebert N. Kampf D. Baumann B. Frei U. Suttorp N. (2002). Domestic cholera in Germany associated with fresh fish imported from Nigeria. Eur. J. Clin. Microbiol. Infect. Dis. 21, 827828. doi: 10.1007/s10096-002-0832-z Sergelidis D. Abrahim A. Papadopoulos T. Soultos N. Martziou E. Koulourida V. . (2014). Isolation of methicillin-resistant staphylococcus spp. from ready-to-eat fish products. Lett. Appl. Microbiol. 59, 500506. doi: 10.1111/lam.12304 Sudha S. Mridula C. Silvester R. Hatha A. A. (2014). Prevalence and antibiotic resistance of pathogenic vibrios in shellfishes from Cochin market. Indian J. Geo. Mar. Sci. 43, 815824. Tan C. W. Malcolm T. T. H. Kuan C. H. Thung T. Y. Chang W. S. Loo Y. Y. (2017). Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from short mackerels (Rastrelliger brachysoma) in Malaysia. Front. Microbiol. 8, 1087. doi: 10.3389/fmicb.2017.01087 Tanil G. B. Radu S. Nishibuchi M. Rahim R. A. Napis S. Maurice L. . (2005). Characterization of Vibrio parahaemolyticus isolated from coastal seawater in peninsular malaysia. Southeast Asian j . Trop. Med. Pub. Health 36 (4), 940945. Tate H. Ayers S. Nyirabahizi E. Li C. Borenstein S. Young S. . (2022). Prevalence of antimicrobial resistance in select bacteria from retail seafood - united state. Front. Microbiol. 13, 928509. doi: 10.3389/fmicb.2022.928509 Tette E. M. Neizer M. Nyarko M. Y. Sifah E. K. Nartey E. T. Donkor E. S. (2016). Changing patterns of disease and mortality at the children’s hospital, Accra: are infections rising? PloS One 11, e0150387. doi: 10.1371/journal.pone.0150387 Tetteh-Quarcoo P. B. Donkor E. S. Attah S. K. Duedu K. O. Afutu E. Boamah I. . (2013). Microbial carriage of cockroaches in a tertiary hospital in Ghana: public health implications. Environ. Health Insights 7, 5966. doi: 10.4137/EHI.S12820 Titilawo Y. Obi L. Okoh A. (2015). Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in osun state, south Western Nigeria: implications for public health. Sci. Total Environ. 523, 8294. doi: 10.1016/j.scitotenv.2015.03.095 Tørris C. Småstuen M. C. Molin M. (2018). Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients10 7), 952. doi: 10.3390/nu10070952 Vaiyapuri M. Joseph T. C. Rao B. M. Lalitha K. V. Prasad M. M. (2019). Methicillin-resistant Staphylococcus aureus in seafood: prevalence, laboratory detection, clonal nature, and control in seafood chain. J. Food Sci. 84, 33413351. doi: 10.1111/1750-3841.14915 Van Acker H. Van Dijck P. Coenye T. (2014). Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 22, 326333. doi: 10.1016/j.tim.2014.02.001 Vázquez-Sánchez D. Lopez-Cabo M. Saa-Ibusquiza P. Rodriguez-Herrera J. J. (2012). Incidence and characterization of Staphylococcus aureus in fishery products marketed in Galicia (northwest Spain). Int. J. Food Microbiol. 157, 286296. doi: 10.1016/j.ijfoodmicro.2012.05.021 Vezzulli L. Pruzzo C. Huq A. Colwell R. R. (2010). Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ. Microbiol. Rep. 2, 2733. doi: 10.1111/j.1758-2229.2009.00128.x Virupakshaiah D. B. M. Hemalata V. B. (2016). Molecular identification of Pseudomonas aeruginosa from food borne isolates. Int. J. Curr. Microbiol. Appl. Sci. 5 (6), 10261032. doi: 10.20546/ijcmas.2016.506.109 Walsh C. Duffy G. O’Mahony R. McDowell D. A. Fanning S. (2008). Transfer of ampicillin resistance from Salmonella typhimurium DT104 to Escherichia coli K12 in food. Lett. Appl. Microbiol. 46, 210215. doi: 10.1111/j.1472-765X.2007.02288.x Wamala S. P. Mugimba K. K. Dubey S. Takele A. Munang'andu H. M. Evensen Ø. . (2018). Multilocus sequence analysis revealed a high genotypic diversity of Aeromonas hydrophila infecting fish in Uganda. Fish Diseases. 41 (10), 15891600. doi: 10.1111/jfd.12873 WHO (2015). Available at: https://apps.who.int/iris/bitstream/handle. WHO (2021a) Cholera. Available at: https://www.who.int/news-room/fact-sheets/detail/cholera. WHO (2021b) Antimicrobial resistance. Available at: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Wose K. C. N. Ateba N. Kawadza T. D. (2010). Antibiotic resistance profiles of Escherichia coli isolated from different water sources in the mmabatho locality, north-West province, south Africa. Res. Lett. 106 (1-2), 4449. Xie T. Yu Q. Tang X. Zhao J. He X. (2020). Prevalence, antibiotic susceptibility and characterization of Vibrio parahaemolyticus isolates in China. FEMS Microbiol. Letters. 367 (16), fnaa136. doi: 10.1093/femsle/fnaa136 Zanetti S. Spanu T. Deriu A. Romano L. Sechi L. A. Fadda G. (2001). In vitro susceptibility of Vibrio spp. isolated from the environment. Int. J. Antimicrob. Agents. 17, 407409. doi: 10.1016/S0924-8579(01)00307-7 Zhou Y. C. Wang J. Zhang B. Su Y. Q. (2002). Ultrasonic immunization of sea bream, pagrus major (Temminck & schlegel), with a mixed vaccine against Vibrio alginolyticus and V. anguillarum . J. Fish Dis. 25, 325331. doi: 10.1046/j.1365-2761.2002.00383.x
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gsxuzx.com.cn
      www.gpchain.com.cn
      www.gcchain.com.cn
      www.ixcoin.net.cn
      www.nu1.com.cn
      qg717.net.cn
      phase.net.cn
      myjrfk.com.cn
      www.wulianyi3.com.cn
      www.jnswmb.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p