Front. Aging Frontiers in Aging Front. Aging 2673-6217 Frontiers Media S.A. 983373 10.3389/fragi.2022.983373 Aging Original Research Chronic blue light leads to accelerated aging in Drosophila by impairing energy metabolism and neurotransmitter levels Yang et al. 10.3389/fragi.2022.983373 Yang Jun 1 * Song Yujuan 2 Law Alexander D. 3 Rogan Conner J. 4 Shimoda Kelsey 2 Djukovic Danijel 5 Anderson Jeffrey C. 4 Kretzschmar Doris 3 Hendrix David A. 1 6 Giebultowicz Jadwiga M. 2 * 1 Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States 2 Department of Integrative Biology, Oregon State University, Corvallis, OR, United States 3 Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States 4 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States 5 The Northwest Metabolomics Research Center, University of Washington Medicine, Seattle, WA, United States 6 School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, United States

Edited by: David Clancy, Lancaster University, United Kingdom

Reviewed by: John Tower, University of Southern California, United States

Di Chen, Nanjing University, China

*Correspondence: Jun Yang, yangjun@oregonstate.edu; Jadwiga M. Giebultowicz, giebultj@oregonstate.edu

This article was submitted to Genetics, Genomics and Epigenomics of Aging, a section of the journal Frontiers in Aging

31 08 2022 2022 3 983373 30 06 2022 02 08 2022 Copyright © 2022 Yang, Song, Law, Rogan, Shimoda, Djukovic, Anderson, Kretzschmar, Hendrix and Giebultowicz. 2022 Yang, Song, Law, Rogan, Shimoda, Djukovic, Anderson, Kretzschmar, Hendrix and Giebultowicz

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Blue light (BL) is becoming increasingly prevalent in artificial illumination, raising concerns about its potential health hazard to humans. In fact, there is evidence suggesting that acute BL exposure may lead to oxidative stress and death of retinal cells specialized for photoreception. On the other hand, recent studies in Drosophila melanogaster demonstrated that chronic BL exposure across lifespan leads to accelerated aging manifested in reduced lifespan and brain neurodegeneration even in flies with genetically ablated eyes, suggesting that BL can damage cells and tissues not specialized for light perception. At the physiological level, BL exposure impairs mitochondria function in flies, but the metabolic underpinnings of these effects have not been studied. Here, we investigated effects of chronic BL on metabolic pathways in heads of eyes absent (eya 2 ) mutant flies in order to focus on extra-retinal tissues. We compared metabolomic profiles in flies kept for 10 or 14 days in constant BL or constant darkness, using LC-MS and GC-MS. Data analysis revealed significant alterations in the levels of several metabolites suggesting that critical cellular pathways are impacted in BL-exposed flies. In particular, dramatic metabolic rearrangements are observed in heads of flies kept in BL for 14 days, including highly elevated levels of succinate but reduced levels of pyruvate and citrate, suggesting impairments in energy production. These flies also show onset of neurodegeneration and our analysis detected significantly reduced levels of several neurotransmitters including glutamate and Gamma-aminobutyric acid (GABA), suggesting that BL disrupts brain homeostasis. Taken together, these data provide novel insights into the mechanisms by which BL interferes with vital metabolic pathways that are conserved between fly and human cells.

Drosophila blue light neurodegeneration neurotransmitter succinate glutamate energy metabolism metabolomics R01 AG061406 1RF1AG069334 National Institutes of Health10.13039/100000002

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Blue light (BL), which is characterized by high-energy short-wave light, has attracted interest as a potential health hazard to humans (Ouyang et al., 2020). BL is common in artificial lighting such as light-emitting diodes (LED) (Tsao et al., 2010; Lee et al., 2018) to which humans are increasingly exposed. There is increasing evidence that BL has the potential to damage human eyes contributing to diseases ranging from glaucoma (Ouyang et al., 2020) to retinal degeneration and age-related maculopathy (Algvere et al., 2006); however, little is known about the mechanisms of damage. Recent research on BL effects focused on human retina-related cells in vitro and suggest that BL can increase reactive oxygen species (ROS), cause DNA damage, impair mitochondrial function, and damage lysosomes (Ouyang et al., 2020; Kam et al., 2021). An in vivo model of acute BL phototoxicity was developed in the fruit fly, Drosophila melanogaster. It was reported that BL exposure induces phototransduction-dependent oxidative stress, lipid peroxidation and retinal degeneration in compound eyes (Chen et al., 2017).

      Recent studies suggest that BL may be damaging to cells not specialized for phototransduction with such damage being reflected at the organismal level. For example, visible light, especially in the blue region, causes oxidative stress and shortens the lifespan of the nematode C. elegans (De Magalhaes Filho et al., 2018). Further, adult Drosophila exposed to 12 h of BL per day show symptoms of accelerated aging including impaired locomotor performance, brain neurodegeneration, and reduced lifespan compared to flies reared in constant darkness or LED light with blue wavelengths filtered out (Nash et al., 2019). These phenotypes were not only observed in wild type flies, but also in mutants with genetically ablated eyes (eya 2 ) kept in BL, suggesting that detrimental effects of BL, did not depend on the photoreceptor damage (Nash et al., 2019). Studies of mitochondria in the heads of eya 2 flies exposed to constant BL have connected the reduced lifespan to impairment of mitochondrial respiratory function, namely, reduced activity of Complex II in the electron transport chain (Song et al., 2022). It was also reported that sensitivity to BL is strongly age-dependent: BL reduces survival and significantly increases neurodegeneration in aged flies due to light-independent impairments in energy metabolism with age (Song et al., 2022).

      Given that impairment of mitochondrial respiratory function by BL can affect brain function and lifespan in flies, it is important to understand how BL exposure affects metabolome composition. This question has not been addressed in any organism in vivo or in vitro. To understand how BL affects metabolic pathways in flies, we compared metabolomic profiles in heads of eya 2 flies kept in constant BL or constant darkness (DD). Our rationale for using constant light condition was based on recent reports that several metabolites show daily fluctuations in their levels that are regulated by the circadian clock and light/dark cycles (Rhoades et al., 2018). Constant light abolishes these fluctuations by stopping the clock. We have previously shown that genetic disruption of the clock does not alter lifespan of flies exposed to phototoxic effects of BL (Nash et al., 2019).

      In this study, we used LC-MS and GC-MS to analyze changes in metabolite levels in flies exposed to constant BL before and after onset of BL-induced neurodegeneration. We report that the accelerated aging in Drosophila kept in BL is associated with significant changes in pathways involved in energy and amino acid metabolism and with altered levels of several brain neurotransmitters. The results provide new insights into the specific processes that are impaired by blue light in cells and tissues not specialized in phototransduction.

      Materials and methods Drosophila rearing, light exposure, longevity and neurodegeneration

      D. melanogaster was maintained on a standard diet containing yeast (35 g/L), cornmeal (50 g/L), and molasses (5%) at 25 ± 1°C. Eyes absent (eya 2 ) mutants (Bloomington Drosophila Stock Center stock # 2285), which do not develop compound eyes (Bonini et al., 1993) were used in all experiments. Fly colonies were reared in cycles of 12 h of fluorescent light alternating with 12 h darkness. Flies used in the experiments were mated and separated by sex when 2–3 days old. Experimental adult males were maintained in constant darkness (DD) or constant blue light (BL) with a peak emission of 460 nm produced by the MarsAqua Dimmable 165W LED Light with a photon flux density of 20–30 μmol/m2/sec (irradiance of∼0.4 mW/cm2) measured at the level of horizontally placed narrow vials (Genesee Scientific), each containing 25 flies as previously described (Nash et al., 2019).

      For each light condition, lifespan was measured using at least 50 males held in groups of 25 with mortality recorded and fresh diet provided every 2–3 days. Mortality curves were statistically analyzed using the log-rank test in GraphPad Prism 6.

      To quantify BL-induced neurodegeneration in the brain, we measured the area of all vacuoles seen on sections of the brain as described previously (Carmine-Simmen et al., 2009). Analyses were done double-blind and statistical significance was determined with unpaired t-tests using GraphPad Prism 6.

      Succinate Dehydrogenase Assay

      SDH activity was measured using the Succinate Dehydrogenase Activity Colorimetric Assay Kit (Sigma-Aldrich) as described (Song et al., 2022). Briefly, heads isolated from BL or DD males were homogenized with 100 µl of ice-cold SDH assay buffer, kept on ice for 10 min, and centrifuged at 10,000 × g for 5 min at 4°C. The supernatant (10 µl) was mixed with 92 µl of reaction mix (88 µl of SDH assay buffer, 2 µl of SDH substrate, and 2 µl of SDH probe) in each well and the absorbance was immediately read at 600 nm in kinetic mode for 30 min at 25°C using a BioTek Synergy 2 microplate reader. The SDH activity was calculated according to the manufacturer’s instructions and normalized to total protein concentration of the sample.

      ATP Assay

      ATP was measured using the ATPlite Luminescence ATP Detection Assay System (Perkin Elmer) as described (Song et al., 2022). For each sample, 25 male heads were homogenized and the samples were centrifuged at 1,000 × g for 10 min at 4°C. For each sample, 60 µl of mitochondria-enriched supernatant was aliquoted to a fresh tube and boiled immediately for 10 min, then centrifuged at 20,000 × g for 5 min at 4°C. The steady state ATP content was measured in the supernatant in a white 96-well plate. 10 µl of supernatant was mixed with 90 µl of Schneider’s medium (Gibco, 21720-024) and 50 µl Cell Lysis Solution in each well. Then 50 µl of substrate solution was added to each sample well and mixed by shaking the plate for 5 min on an orbital shaker. The plate was dark adapted for 10 min and the luminescence was measured at 25°C using a BioTek Synergy 2 microplate reader. The ATP level was calculated using ATP standard curve and normalized to protein concentration of the sample.

      Liquid chromatography—Mass spectrometry

      Males that were 2–4 days old were placed in BL or DD for 10 or 14 days, then collected for analysis. For each experimental condition, 8 samples of 50 fly heads each (7 samples for 14 BL conditions) were separated by vortexing flies in liquid nitrogen-cooled tubes. Aqueous metabolites for targeted LC-MS profiling were extracted as previously described (Kurup et al., 2021). Briefly, heads were transferred into bead tubes with ceramic 1.4 mm beads (Qiagen PowerBead Tubes) containing 200 µl purified deionized water at 4°C, then 800 µl of cold methanol was added (containing 124 µM 6C13-glucose and 25.9 µM 2C13- glutamate as internal standards to monitor sample prep). A pre-chilled Qiagen bead beater set at 30 Hz was used to homogenize tissue. The resulting homogenates were incubated at −20°C for 1 h, centrifuged at 20,000 × g for 5 min at 4°C, and 600 µl of the supernatant was transferred into a 1.5 ml microcentrifuge tube. Lastly, recovered supernatants were dried on a SpeedVac and reconstituted in 1.0 ml of LC- matching solvent containing 17.8 µM 2C13-tyrosine and 39.2 3C13-lactate (reference internal standards were added to the reconstituting solvent in order to monitor LC-MS performance). Samples were transferred into LC vials and placed into a temperature controlled autosampler for LC-MS analysis.

      Targeted LC-MS metabolite analysis was performed on a duplex-LC-MS system composed of two Shimadzu UPLC pumps, CTC Analytics PAL HTC-xt temperature-controlled auto-sampler and AB Sciex 6500+ Triple Quadrupole MS equipped with ESI ionization source (2). UPLC pumps were connected to the auto-sampler in parallel and were able to perform two chromatography separations independently from each other. Each sample was injected twice on two identical analytical columns (Waters XBridge BEH Amide XP) performing separations in hydrophilic interaction liquid chromatography (HILIC) mode. While one column was performing separation and MS data acquisition in ESI+ ionization mode, the other column was getting equilibrated for sample injection, chromatography separation and MS data acquisition in ESI− mode. Each chromatography separation was 18 min (total analysis time per sample was 36 min). MS data acquisition was performed in multiple-reaction-monitoring (MRM) mode. LC-MS system was controlled using AB Sciex Analyst 1.6.3 software. Measured MS peaks were integrated using AB Sciex MultiQuant 3.0.3 software. The LC-MS assay was targeting 361 metabolites (plus 4 spiked reference internal standards). In addition, to the study samples, two sets of quality control (QC) samples were used to monitor the assay performance as well as data reproducibility. One QC [QC (I)] was a pooled human serum sample used to monitor system performance and the other QC [QC (S)] was pooled study samples and this QC was used to monitor data reproducibility. Each QC sample was injected per every 10 study samples. The data were well reproducible with a median CV of 4.6%.

      Gas chromatography—Mass spectrometry

      GC-MS was performed on heads of males held in BL or DD for 14 days. Eight samples of 50 flies were used for each condition. For each sample, 50 male heads were separated by vortexing flies in liquid nitrogen-cooled tubes. Heads were transferred into bead tubes with ceramic 1.4 mm beads (Qiagen PowerBead Tubes). A Qiagen bead beater set at 30 Hz was used to homogenize tissue samples in 800 µl of pre-chilled (−20°C) 90% methanol containing 0.5 ng/ml ribitol as internal standard. The resulting homogenates were incubated at -20°C for 1 h, centrifuged at 20,000 × g for 5 min at 4°C, and 600 µl of the resulting supernatant transferred into a 1.5 ml microcentrifuge tube. The samples were evaporated to dryness in a centrifugal vacuum concentrator. The dried residue was resuspended in 10 µl of 30 mg/ml methoxyamine hydrochloride in pyridine (Sigma-Aldrich) and incubated at 37°C for 1.5 h shaking vigorously. Next, 25 µl of N-methyl-N-(trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane (Covachem) was added and the samples were incubated at 37°C for 30 additional min with vigorously shaking. The samples were then transferred to glass autosampler vials, and 1 μl of the sample was injected with a 4:1 split into an Agilent 7890B GC system with a 30 m plus 10 m Duraguard × 0.25 mm × 0.25 μm DB-5MS + DG Agilent column. The oven temperature was kept at 60°C for 1 min, then ramped to 300°C at a rate of 10°C/min and held at 300°C for 10 min. Analytes were detected with an Agilent 5977B MSD in EI mode scanning from 50 m/z to 600 m/z. Mass spectrum analysis, component identification and peak area quantification were performed with AMDIS (Davies, 1998) using the FiehnLib (Kind et al., 2009) for automated component identification. A component was considered a match to a FiehnLib entry if the match score was >60 based upon spectral matching to the library entry, a retention time window of 6 s and strong retention-time drift penalties.

      Metabolite analysis

      After removing any metabolites missing in more than 50% of samples, we were left with 175 LC 10-day metabolites, 176 LC 14-day metabolites, and 91 GC 14-day metabolites. Missing values in the remaining data were estimated with k-nearest neighbor and further normalized using “Statistical Analysis” function in MetaboAnalyst 5.0 web server (Pang et al., 2021). Data were normalized with sum normalization, log transformation, and auto scaling (computing z-scores) before t-test statistics (van den Berg et al., 2006). Density plots were created using the “seaborn” package of Python 2.7.14 (van Rossum, 1995; Hunter, 2007). Principal Component Analysis (PCA) was performed using the “factoextra” package of RStudio (Kassambara and Mundt, 2020; RStudio Team, 2020). Each PCA analysis was done between corresponding BL and DD group for the first five PC dimensions. PCA that minimize the intersection of the irregular polygon that contains all metabolites in each condition is shown in the figure with overlap rates. Overlap rates were computed using the “sf” package of RStudio (Opgen-Rhein et al., 2021). We plotted heatmaps to illustrate changes in metabolites after BL exposure using the “pheatmap” of package of RStudio (Kolde, 2019).

      Metabolic pathway enrichment analysis and pathway topology analysis were conducted using the MetaboAnalyst 5.0 computational platform (Pang et al., 2021). Pathways were visualized using the “matplolib” package of Python 2.7.14 (Hunter, 2007). Geometric means between the BL and DD were calculated with the following equation: Geometric mean =   ( i = 1 n p i ) 1 n , where i represents metabolites belong to corresponding pathways, n represents the total metabolites belonging to that pathway, and p i represents the p-value for corresponding metabolites between BL and DD. Pathway impact and enrichment scores were computed using the MetaboAnalyst 5.0 (Pang et al., 2021).

      Individual metabolites box plots were created with GraphPad Prism 6 and statistical significance was determined with unpaired t-tests.

      Results Effects of different duration of constant blue light on fly survival and neurodegeneration

      The longevity of D. melanogaster mutants with genetically ablated eyes (eya 2 ) is dramatically reduced in constant BL (Song et al., 2022). To investigate the timeline of damaging effects of BL, we tested the survival of eyeless male flies that were kept in constant BL for 10, 14, and 16-days and then transferred to DD. Mortality curves compared by log-rank test show that the survival of flies is significantly reduced proportionally to the increased number of days in BL compared to DD controls (Figure 1A). The lifespan showed a small but significant decrease in flies kept in BL for 10 days and was reduced more significantly in flies kept in constant BL for 14 days, but no flies died during BL exposure. However, among flies kept in BL for 16-days some died during and soon after BL exposure while others survived and continued living in DD (Figure 1A) showing that this cohort was composed of flies with reversible and irreversible BL damage.

      Effects of length of constant BL on lifespan and neurodegeneration in eya 2 flies. (A) Lifespan was measured in flies kept in constant darkness (DD), constant blue light (BL), or transferred from BL to DD after 10, 14, or 16 days in BL). Stars indicate significant differences in survival in BL based on statistics by log-rank test (∗∗∗∗ p < 0.0001). (B) Quantification of the average area of vacuoles in heads of flies exposed to BL for 10, 14, and 16 days and their age-matched DD control. Statistics by unpaired t-test ( p < 0.05) Numbers above bars indicate number of brains examined for each age and light condition. Error bars indicate standard error of the mean (SEM). (C) Representative images of brain sections showing brain vacuoles (red arrows) after indicated number of days in BL. (D) Scheme of the experimental design showing the treatment of flies collected for metabolomic profiles.

      We next evaluated brain neurodegeneration in eya 2 males exposed to constant BL for 10, 14, or 16 days compared to flies kept in DD for the same number of days (Figure 1B). For this purpose, heads were sectioned to measure the size of vacuoles indicative of brain cell loss. Flies kept in BL for 10d displayed negligible vacuolization similar to the DD control (Figure 1C). However, a significant increase in brain vacuolization was detected after 14 and 16 days of BL exposure compared to age-matched DD controls (Figure 1C). Given that BL did not affect brain vacuolization after 10 days of exposure but increased brain neurodegeneration in flies exposed to BL for 14 days, we investigated the effects of BL on metabolomic profiles at these two time points (experimental scheme in Figure 1D) to obtain insights into metabolite changes associated with the onset of brain damage.

      Metabolome of <italic>Drosophila</italic> heads changes with length of blue light exposure

      We compared metabolome profiles in heads of males kept in BL or DD for 10 and 14 days using both liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Data from LC-MS or GC-MS were normalized through sum normalization, log transformation, and standard deviation scaling using MetaboAnalyst 5.0 (Pang et al., 2021) to limit sample loading difference and make all metabolites equally important irrespective of measurement errors (van den Berg et al., 2006). All metabolites detected in our study along with statistical analysis are shown in Supplementary Table S1.

      LC-MS analysis of flies kept in BL for 10 days detected 175 metabolites, 9 of which were significantly altered compared to the DD control (t-test, p ≤ 0.05). Principal component analysis (PCA) of metabolites shows weak separation, with a minimum coverage rate, defined by the area intersection of the irregular polygons containing each metabolite, (17.9%, Supplementary Figure S1) PC2 and PC4 explaining 14.7% and 7.4% of the variability, respectively (Figure 2A). The density plot showing the distribution of relative concentration for both BL and DD indicate that BL exposure reduced the level of most metabolites. (Figure 2B). Heatmap shows two metabolites upregulated and seven downregulated by BL (Figure 3A).

      LC- and GCMS detected significant metabolome changes in heads of eya 2 flies kept in BL. (A,C,E) PCA plots of LC-MS or GC-MS metabolite data comparing flies kept for 10 or 14 days in BL versus DD. For additional data see Supplementary Figures S1–S3. (B,D,F) Density plots for the same datasets. The distribution curve was calculated based on the histogram of the relative concentration distribution (x-axis). The probability density function for the concentration distribution was used as the y-axis.

      Heat maps showing metabolites significantly altered in response to BL. (A) BL exposure for 10 days with detection by LC-MS. (B) BL exposure for 14 days with detection by LC-MS. (C) BL exposure for 14 days with detection by GC-MS. Labels in red denote metabolites found significant by both methods at both time points, labels in blue show metabolites found significant by LC-MS after both 10 and 14 days of BL exposure, and labels in purple show metabolites found significant after 14 days of BL exposure with both methods. (D) Relative concentrations of succinate the most significantly altered metabolite. (E) Activity of succinate dehydrogenase (SDH) measured in heads of eya 2 flies was significantly altered after 10 and 14 days of BL exposure. Lines in box plot represent max, upper quartile, median, lower quartile, and min from top to bottom. Statistical analysis by unpaired t-test (∗∗∗∗ p < 0.0001).

      LC-MS analysis of flies kept in BL for 14 days detected 176 metabolites, 30 of which were significantly altered in BL flies compared to DD control (t-test, p ≤ 0.05) demonstrating that changes in metabolites become more dramatic with longer exposure to BL. PCA for this data set is shown in Figure 2C, with a lower minimum coverage rate (4.8%, Supplementary Figure S2) on PC3 and PC5 explaining 10.3% and 4.3% of the variability, respectively. The density plot shows the BL distribution curve shift further to the left, which indicates the metabolome changes caused by BL were more pronounced compared to 10-day BL exposure (Figure 2D). The heatmap shows 9 metabolites upregulated and 21 downregulated in flies kept in BL for 14 days (Figure 3B). Most metabolites altered after 10 days of BL are still detected as significant at 14 days except for uridine diphosphate glucose (UDP-glucose), 3-ureidopropanoate, and hydroxypropionate (p = 0.057 in 14-day). Succinate and riboflavin continue to be the most altered metabolites with fold-change of 2.05 increase or 2.17 decrease, respectively.

      LC-MS and GC-MS provide both overlapping and distinct capabilities for metabolomics in terms of metabolite detection (Patti et al., 2012; Fiehn, 2016). Therefore, to complement our LC-MS approach, we also used GC-MS to profile the presence and relative abundance of low molecular weight metabolites in BL-treated flies. For these experiments we used flies exposed to BL for 14 days because of more dramatic differences in metabolites detected by LC-MS at this age (Figures 3A,B). GC-MS analysis detected 87 metabolites, 10 of which were significantly changed with BL exposure (t-test, p ≤ 0.05). Using PCA, metabolome profiles effectively separated BL effects, with PC1 and PC5 explaining 27.3% and 8.3% (Figure 2E). The BL distribution curve was shifted to the left compared with DD control in the density plot, confirming that BL exposure reduced most metabolite levels (Figure 2F). Heatmap shows five upregulated and five downregulated metabolites (Figure 3C). Significant differences in the abundance of succinate, glycerol 3-phosphate (G3P) and beta-alanine were detected by both LC- and GC-MS; however, several significantly altered metabolites were only detected by GC-MS, namely, threonine, isoleucine, homoserine, citrate, and 3-aminoisobutanoic acid, a protective factor against metabolic disorder (Roberts et al., 2014).

      Succinate is one of the most significantly increased metabolites (p = 8.85 × 10−05) detected by both LC- and GC-MS in flies kept in BL for 10 and 14 days (Figure 3D). Increased succinate level suggest that the enzymatic activity of succinate dehydrogenase (SDH) may be compromised; therefore, we measured the activity of SDH in fly heads kept for 10 and 14 days in constant BL and age-matched DD controls. SDH activity was reduced significantly (p < 0.0001) in flies exposed to BL for both 10 and 14 days (Figure 3E) indicating that it is an early indicator of metabolic impairment. It appears that SDH deficiency is likely responsible for considerable succinate accumulation, although we note that fumarate, the product of this reaction is not significantly different (Supplementary Table S1).

      Several metabolic pathways are altered in response to constant blue light

      To obtain insights into processes most significantly altered by BL exposure, we used MetaboAnalyst 5.0 “Pathway Analysis” function (Pang et al., 2021). We performed this analysis on combined data obtained by LC-MS and GC-MS in flies exposed to BL for 14 days and DD controls. Detailed results of pathway analysis are shown in Supplementary Table S2.

      Pathway enrichment analysis revealed that the propanoate metabolism, tricarboxylic acid (TCA) cycle, riboflavin metabolism, butanoate metabolism, as well as alanine, aspartate and glutamate (AAG) metabolism are the most altered metabolic pathways associated with BL exposure (Figure 4A). Pathways with a p-value <0.1 are listed in Figure 4B with the number of metabolites up or downregulated by BL. We note significant reduction in the level of non-essential amino acids including glutamate, alanine, asparagine, and aspartate (Figure 4C), as well as arginosuccinate (Figure 3B), which participate in a number of pathways impacted by BL exposure (AAG, butanoate, arginine biosynthesis).

      Pathway analysis indicate several processes involving non-essential amino acids are affected by BL. (A) Pathway enrichment statistics plot. Each node reflects a significantly altered cluster of metabolites. Pathway impact values from pathway topology analysis are on the x-axis. Geometric differences in concentration level between BL exposed and control flies are on the y-axis. The node color is based on its enrichment score and the node size is based on the number of significantly altered metabolites in the corresponding pathways. AAG: alanine, aspartate, and glutamate metabolism. (B) Histogram representing the top enriched metabolic processes showing number of metabolites up- or downregulated after 14 days of BL. A p-value cutoff of 0.1 was used. (C) Relative levels of glutamate, L-alanine, aspartate, and asparagine are significantly reduced after 14 days of BL exposure. Lines in box plot represent max, upper quartile, median, lower quartile, and min from top to bottom. Statistical analysis by unpaired t-test (∗∗ p < 0.01, p < 0.05).

      Blue light impairs pathways associated with energy metabolism

      As noted above, succinate is highly elevated in BL-exposed flies possible due to decreased activity of SDH which plays important roles in both the TCA and ETC cycle. In contrast, the levels of several other metabolites feeding into the TCA cycle are significantly reduced including glycolysis-derived pyruvate, acetoacetate, and citrate (Figure 5A). These changes suggest that energy production may be severely impaired in constant BL. In support of this prediction, levels of ADP were significantly increased in BL-exposed flies (Figure 5B). Since ATP was not detected with LC- or GC-MS, we measured steady-state levels of ATP in BL-exposed flies and DD controls using bioluminescent assays. ATP levels were somewhat lower in flies kept for 10 days in BL and highly significantly reduced (p < 0.001) after 14 days in BL compared to DD controls (Figure 5C). It should be noted that our analysis detected elevated levels of G3P (Figures 3B,C), which allows the NADH synthesized in the cytosol by glycolysis to contribute to the oxidative phosphorylation pathway in the mitochondria to generate ATP.

      Schematic overview of the metabolic pathways most affected by chronic BL in heads of eya 2 flies. (A) Downregulated metabolites are shown in red, and upregulated metabolites in blue. (B) Box plots for ADP levels after 10 or 14 days of chronic BL. (C) ATP levels in heads of flies after 10 or 14 days of BL. N = 6 independent biological replicates of 25 flies for each condition. Lines in box plot represent max, upper quartile, median, lower quartile, and min from top to bottom. Statistical analysis by unpaired t-test (∗∗∗ p < 0.001, p < 0.05).

      Blue light exposure alters levels of several brain neurotransmitters

      Given that flies exposed to BL for 14 days showed significant brain neurodegeneration (Figure 1D), we sought to identify any changes in neurotransmitters and neuromodulators in these flies. Our data show that the levels of both, excitatory glutamate and inhibitory GABA neurotransmitters are significantly reduced (Figures 6A,B). In addition, histamine levels are significantly reduced (Figure 6C); while histamine is a well-known neurotransmitter in the fly photoreceptors (Borycz et al., 2012), detecting it in eyeless flies is consistent with a recent report that histamine signaling functions in other parts of the brain where it is involved in modulating temperature preference in flies (Hong et al., 2006). Interestingly, histamine is inactivated by conjugation to β-alanine (Borycz et al., 2012), which is also significantly decreased in heads of flies kept in BL for 14 days (Figures 3B,C). The levels of acetylcholine and dopamine were not different between BL and DD flies (Figures 6E,F), while serotonin was modestly elevated in brains of BL flies (Figure 6D). Taken together, these data suggest that BL leads to an imbalance in the levels of neurotransmitters in eyeless flies.

      Some neurotransmitters are significantly reduced after 14 days of chronic BL. (A–F) Relative concentration of Glutamate, GABA, and Histamine are significantly lower after 14 days of chronic BL but others are not altered. Lines in box plot represent max, upper quartile, median, lower quartile, and min from top to bottom. Statistical analysis by unpaired t-test (∗∗ p < 0.01, p < 0.05, ns p > 0.05).

      Supplementation of reduced metabolites does not extend lifespan in blue light-exposed flies.

      Several of the metabolites that were significantly reduced in BL-exposed flies play important roles in metabolic homeostasis. One such metabolite is glutamate, which is at the crossroad between multiple metabolic pathways (Figure 5A). To test if glutamate deficiency is causative in accelerated aging in BL-exposed flies, we supplemented the fly diet with 200 and 400 μg/ml of glutamate and recorded their mortality. We found that 200 μg/ml glutamate did not significantly alter lifespan of flies kept in constant BL, while 400 μg/ml shortened lifespan compared to no glutamate control (Supplementary Figure S4).

      Our data revealed that riboflavin (vitamin B2) was the most significantly reduced metabolite (p = 4.08 × 10−04) in BL-exposed flies (Supplementary Table S1, Supplementary Figure S5A). Given that riboflavin is a precursor to FMN and FAD, which serve as cofactors in many proteins involved in energy metabolism, we tested the effects of riboflavin supplementation on lifespan of eya 2 flies in chronic BL. Fly diet was enriched with 200 μg/ml and 400 μg/ml of riboflavin and mortality was recorded. As shown in Supplementary Figure S5B,C, both concentrations shortened the lifespan compared to the no riboflavin control.

      Discussion

      Natural light is necessary for life, but prolonged exposure to artificial light with a high content of blue wavelengths, is a matter of increasing concern for human health, especially with regard to retinal pathologies. However, recent data on the model organisms C. elegans (De Magalhaes Filho et al., 2018) and D. melanogaster (Nash et al., 2019; Song et al., 2022) demonstrate that cells and tissues not specialized for light perception, such as brain, can be damaged in flies kept in BL for extended time. In the present study, we investigated effects of chronic BL on metabolic pathways in heads of flies with genetically ablated eyes in order to focus on extra-retinal tissues. Our metabolomic analyses revealed alterations in the levels of several metabolites suggesting that energy production and other cellular pathways are significantly altered in these flies. In particular, dramatic metabolic rearrangements are observed in heads of flies kept in BL for 14 days. These flies show onset of neurodegeneration, consistent with accelerated aging; yet, their lifespan can be rescued if they are returned to DD. Thus, our results may provide insights into both mechnisms that initially protect fly physiology, and metabolic impairments that could damage fly cells upon longer BL exposure.

      In our previous work, we showed that damaging effects of blue light significantly increase with the age at which flies are exposed to this stressor. We reported that blue light reduces the activity of Complex II in the electron transport system in both young and old flies. In addition, complex I and complex IV activity are reduced with aging, independent of light exposure (Song et al., 2022). To avoid confounding effects of age-associated metabolomic changes while investigating the impact of BL on the metabolome, the experiments reported here were conducted on young flies exposed to BL for increasing number of days: 10, 14, and 16 days. In this way, our data pertain to specific aspects of cellular damage by BL, irrespective of chronological age.

      Metabolic profile analysis shows that succinate is the most significantly increased metabolite in flies kept in BL for both 10 and 14 days. This increase may be caused, at least in part, by reduced activity of succinate dehydrogenase (SDH), which catalyzes succinate oxidation to fumarate and transfers electrons from succinate to ubiquinone via complex II in the mitochondrial electron transport chain. These data support our previous report on mitochondria respiration showing that blue light specifically reduces the activity of Complex II (Song et al., 2022). A previous study investigating impaired SDH assembly and activity in Drosophila reported elevated succinate levels and also reduced fumarate (Van Vranken et al., 2014). We did not detect a decrease in fumarate, which could possibly be supplied by degradation of tyrosine or other amino acids.

      In addition to acting as an essential intermediate of the TCA cycle, succinate exerts pleiotropic roles beyond metabolism in both physiological and pathological conditions. Succinate produced in mitochondria may be transported to the cytosol and promote protein succinylation, a post-translational modification with the potential to impact protein function (Grimolizzi and Arranz, 2018). Further, succinate is emerging as a systemic metabolic signal that activates specific receptors (conserved in flies) and can affect gene expression to modulate energy metabolism (Murphy and Chouchani, 2022). In glioma and other cancer cells, a decrease or loss of SDH activity leads to accumulation of succinate concomitant with reduced levels of citrate and several non-essential amino acids: glutamate, alanine, aspartate, and asparagine (Lussey-Lepoutre et al., 2015). Remarkably, we observed a similar metabolic phenotype with reduced levels of the same compounds in heads of flies exposed to BL, suggesting, that BL-induced impairment of SDH may trigger metabolic rearrangements induced by elevated succinate.

      Our pathway enrichment analysis showed that the TCA cycle is significantly impacted by BL. TCA is a central metabolic pathway responsible for supplying reducing potential for oxidative phosphorylation and anabolic substrates for cell growth, repair, and proliferation. In contrast to elevated succinate, other metabolites feeding into the TCA cycle, pyruvate and citrate, were significantly reduced (Figure 5). Also decreased were acetoacetate, L-aspartate, B-alanine, and sarcosine, which can be converted to acetyl-CoA by different enzymes. While acetyl-CoA was not detected in our study, our data provide solid evidence that the TCA cycle is dysregulated in BL leading to decreased energy production. Indeed, we detected elevated levels of ADP by LC-MS and reduced levels of ATP (via bioluminescence assay) in heads of flies exposed to BL for 14 days. It is likely that ATP deficiency becomes more aggravated with longer BL exposure, leading to increased neurodegeneration followed by death in these conditions.

      One of the important findings in our metabolite analysis is the apparent imbalance in the levels of neurotransmitters in brains of flies held in BL for 14 days, which showed significant brain neurodegeneration. We found that histamine levels were significantly decreased, which was surprising given that histamine is a well-known neurotransmitter in the fly photoreceptors (Borycz et al., 2012). However, histamine is present in other parts of the brain and it is involved in modulating locomotor behavior (Hong et al., 2006). In addition, levels of the amino acid glutamate which acts as excitatory neurotransmitter are significantly reduced. Glutamate is a precursor neurotransmitter GABA, which is also significantly reduced in BL-exposed flies. Since the levels of other neuromodulators are not affected, it appears that glutamate deficiency may be the culprit for the observed changes.

      Glutamate participates in several metabolic pathways that showed significant enrichment in our analysis including glutathione (GSH) synthesis (Figure 5). Remarkably, GSH is significantly elevated in BL-exposed flies. GSH plays critical roles in protecting cells from oxidative damage and maintaining redox homeostasis. It has been reported that transcription and activity of GSH-producing enzymes increase in aged flies (Klichko et al., 2015; Sebastian et al., 2022); therefore, it is tempting to speculate that glutamate may be diverted into GSH synthesis away from its other roles. However, we found that glutamate supplementation did not increase lifespan under blue light.

      One of the most depleted metabolites in both 10- and 14-day BL flies is riboflavin (Supplementary Figure S5A). Riboflavin is a precursor to flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide (FAD), an essential cofactor in many redox enzymes including SDHA, the catalytic subunit of the SDH complex. Riboflavin is maximally activated by BL of 450 nm, close to the peak of 460 nm, which was used in our study. BL can degrade riboflavin into non-active photoproducts (Sheraz et al., 2014), yet BL does not significantly alter FAD levels in our study suggesting that FAD in flavinated proteins may be somehow protected from BL. Interestingly, it was recently reported that riboflavin is one of the most depleted metabolites in the aging Drosophila eye in regular light/dark cycles (Hall et al., 2021) and in another study (Zou et al., 2017), riboflavin supplementation extended fly lifespan. We tested lifespan of eya 2 flies in chronic blue light on diet supplemented with riboflavin and found that the lifespan was shorter rather than extended, suggesting a more complex regulatory role of riboflavin in the presence of blue light.

      We recognize that there are some limitations to our study. First, although several brain-specific neuromodulators were captured in our study, we analyzed aggregate metabolites present in whole head (albeit without compound eyes), which include not only brains, but also fat body, muscle and epithelial cells. Second, we did not measure changes in lipid metabolites, therefore, contribution of lipids to oxidative phosphorylation in BL-exposed flies remains unknown. Finally, steady-state levels of metabolites do not provide information on how metabolic flux is altered by BL exposure and future research need to address this question.

      In summary, our metabolomic results provide novel insights into the mechanisms by which BL interferes with vital metabolic pathways in extra-retinal cells in flies. All metabolites altered by BL in our study are conserved between fly and human cells. Therefore, it is possible that prolonged exposure to BL may have similar, albeit more subtle effects on skin, subcutaneous fat, and other cells in the human.

      Data availability statement

      The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

      Author contributions

      JMG, JY, and DAH conceived the project; JMG, JY, YS, DD, and JCA designed the experiments; JY, YS, ADL, KS, CJR, DD, and DK performed experiments; JY, KS, DAH, and JCA performed data analysis; JY and JMG wrote the first draft of manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

      Funding

      This work was partially supported by the National Institute of Aging of NIH under award number R01 AG061406 to DAH and 1RF1AG069334 to DK.

      We thank the student lab members: Ben Ramsell help in analyzing GC-MS data; Rujul Kumar, Subisha Sundaram, and Ben Ramsell help with fly maintenance. We thank Dr. Maude David for help with PCA plotting. We acknowledge services of The Northwest Metabolomics Research Center at the University of Washington Medicine, Seattle and NIH S10 grant # 1S10OD021562-01 that funded a purchase of the LC-MS system used to acquire targeted metabolomics data.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fragi.2022.983373/full#supplementary-material

      References Algvere P. V. Marshall J. Seregard S. (2006). Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol. Scand. 84 (1), 415. 10.1111/j.1600-0420.2005.00627.x PubMed Abstract | CrossRef Full Text | Google Scholar Bonini N. M. Leiserson W. M. Benzer S. (1993). The eyes absent gene: Genetic control of cell survival and differentiation in the developing Drosophila eye. Cell. 72 (3), 379395. 10.1016/0092-8674(93)90115-7 PubMed Abstract | CrossRef Full Text | Google Scholar Borycz J. Borycz J. Edwards T. Boulianne G. Meinertzhagen I. (2012). The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-Alanine recycles through the retina. J. Exp. Biol. 215, 13991411. 10.1242/jeb.060699 PubMed Abstract | CrossRef Full Text | Google Scholar Carmine-Simmen K. Proctor T. Tschäpe J. Poeck B. Triphan T. Strauss R. (2009). Neurotoxic effects induced by the Drosophila amyloid-β peptide suggest a conserved toxic function. Neurobiol. Dis. 33 (2), 274281. 10.1016/j.nbd.2008.10.014 PubMed Abstract | CrossRef Full Text | Google Scholar Chen X. Hall H. Simpson J. P. Leon-Salas W. D. Ready D. F. Weake V. M. (2017). Cytochrome b5 protects photoreceptors from light stress-induced lipid peroxidation and retinal degeneration. NPJ Aging Mech. Dis. 3 (1), 1819. 10.1038/s41514-017-0019-6 PubMed Abstract | CrossRef Full Text | Google Scholar Davies A. (1998). The new automated mass spectrometry deconvolution and identification system (AMDIS). Undefined. https://www.semanticscholar.org/paper/The-new-Automated-Mass-Spectrometry-Deconvolution-Davies/0f066a3af0e2f53fb7faac31485f742ba6316e0c. Google Scholar De Magalhaes Filho C. D. Henriquez B. Seah N. E. Evans R. M. Lapierre L. R. Dillin A. (2018). Visible light reduces C. elegans longevity. Nat. Commun. 9 (1), 927. 10.1038/s41467-018-02934-5 PubMed Abstract | CrossRef Full Text | Google Scholar Fiehn O. (2016). “Metabolomics by Gas Chromatography-Mass Spectrometry: The combination of targeted and untargeted profiling,” in Current protocols in molecular biology. Editor Ausubel Frederick M. , 114430. 1-30.4.32. 10.1002/0471142727.mb3004s114 CrossRef Full Text | Google Scholar Grimolizzi F. Arranz L. (2018). Multiple faces of succinate beyond metabolism in blood. Haematologica 103 (10), 15861592. 10.3324/haematol.2018.196097 PubMed Abstract | CrossRef Full Text | Google Scholar Hall H. Cooper B. R. Qi G. Wijeratne A. B. Mosley A. L. Weake V. M. (2021). Quantitative proteomic and metabolomic profiling reveals altered mitochondrial metabolism and folate biosynthesis pathways in the aging Drosophila eye. Mol. Cell. Proteomics. 20, 100127. 10.1016/j.mcpro.2021.100127 PubMed Abstract | CrossRef Full Text | Google Scholar Hong S.-T. Bang S. Paik D. Kang J. Hwang S. Jeon K. (2006). Histamine and its receptors modulate temperature-preference behaviors in Drosophila. J. Neurosci. 26 (27), 72457256. 10.1523/JNEUROSCI.5426-05.2006 PubMed Abstract | CrossRef Full Text | Google Scholar Hunter J. D. (2007). Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9 (3), 9095. 10.1109/MCSE.2007.55 CrossRef Full Text | Google Scholar Kam J. H. Hogg C. Fosbury R. Shinhmar H. Jeffery G. (2021). Mitochondria are specifically vulnerable to 420nm light in drosophila which undermines their function and is associated with reduced fly mobility. PLOS ONE 16 (9), e0257149. 10.1371/journal.pone.0257149 PubMed Abstract | CrossRef Full Text | Google Scholar Kassambara A. Mundt F. (2020). factoextra: Extract and visualize the results of multivariate data analyses (1.0.7) [computer software]. Available at: https://CRAN.R-project.org/package=factoextra. Google Scholar Kind T. Wohlgemuth G. Lee D. Y. Lu Y. Palazoglu M. Shahbaz S. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on Quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81 (24), 1003810048. 10.1021/ac9019522 PubMed Abstract | CrossRef Full Text | Google Scholar Klichko V. I. Chow E. S. Kotwica-Rolinska J. Orr W. C. Giebultowicz J. M. Radyuk S. N. (2015). Aging alters circadian regulation of redox in Drosophila. Front. Genet. 6, 83. 10.3389/fgene.2015.00083 PubMed Abstract | CrossRef Full Text | Google Scholar Kolde R. (2019). pheatmap: Pretty heatmaps (1.0.12) [computer software]. https://CRAN.R-project.org/package=pheatmap. Google Scholar Kurup K. Matyi S. Giles C. B. Wren J. D. Jones K. Ericsson A. (2021). Calorie restriction prevents age-related changes in the intestinal microbiota. Aging (Albany NY) 13 (5), 62986329. 10.18632/aging.202753 PubMed Abstract | CrossRef Full Text | Google Scholar Lee J. Min K. Park Y. Cho K.-S. Jeon H. (2018). Photonic crystal phosphors integrated on a blue LED chip for efficient white light generation. Adv. Mat. 30 (3), 1703506. 10.1002/adma.201703506 PubMed Abstract | CrossRef Full Text | Google Scholar Lussey-Lepoutre C. Hollinshead K. E. R. Ludwig C. Menara M. Morin A. Castro-Vega L.-J. (2015). Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat. Commun. 6, 8784. 10.1038/ncomms9784 PubMed Abstract | CrossRef Full Text | Google Scholar Meador J. P. Bettcher L. F. Ellenberger M. C. Senn T. D. (2020). Metabolomic profiling for juvenile Chinook salmon exposed to contaminants of emerging concern. Sci. Total Environ. 747, 141097. 10.1016/j.scitotenv.2020.141097 PubMed Abstract | CrossRef Full Text | Google Scholar Murphy M. P. Chouchani E. T. (2022). Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18 (5), 461469. 10.1038/s41589-022-01004-8 PubMed Abstract | CrossRef Full Text | Google Scholar Nash T. R. Chow E. S. Law A. D. Fu S. D. Fuszara E. Bilska A. (2019). Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in Drosophila. NPJ Aging Mech. Dis. 5 (1), 8. 10.1038/s41514-019-0038-6 PubMed Abstract | CrossRef Full Text | Google Scholar Opgen-Rhein R. Zuber V. Strimmer K. (2021). st: Shrinkage t Statistic and Correlation-Adjusted t-Score (1.2.7) [Computer software]. Available at: https://CRAN.R-project.org/package=st. Google Scholar Ouyang X. Yang J. Hong Z. Wu Y. Xie Y. Wang G. (2020). Mechanisms of blue light-induced eye hazard and protective measures: A review. Biomed. Pharmacother. 130, 110577. 10.1016/j.biopha.2020.110577 PubMed Abstract | CrossRef Full Text | Google Scholar Pang Z. Chong J. Zhou G. de Lima Morais D. A. Chang L. Barrette M. (2021). MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49 (W1), W388W396. 10.1093/nar/gkab382 PubMed Abstract | CrossRef Full Text | Google Scholar Patti G. J. Yanes O. Siuzdak G. (2012). Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell. Biol. 13 (4), 263269. 10.1038/nrm3314 PubMed Abstract | CrossRef Full Text | Google Scholar Rhoades S. D. Nayak K. Zhang S. L. Sehgal A. Weljie A. M. (2018). Circadian- and light-driven metabolic rhythms in Drosophila melanogaster . J. Biol. Rhythms 33 (2), 126136. 10.1177/0748730417753003 PubMed Abstract | CrossRef Full Text | Google Scholar Roberts L. D. Boström P. O’Sullivan J. F. Schinzel R. T. Lewis G. D. Dejam A. (2014). β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell. Metab. 19 (1), 96108. 10.1016/j.cmet.2013.12.003 PubMed Abstract | CrossRef Full Text | Google Scholar RStudio Team (2020). RStudio: Integrated development for R. RStudio, PBC. Boston, MA. URL https://www.rstudio.com/. Google Scholar Sebastian B. Fey R. M. Morar P. Lasher B. Chow E. S. Geibultowicz J. M. (2022). Discovery and visualization of age-dependent patterns in the diurnal transcriptome of Drosophila (p. 2022.04.06.487011). bioRxiv. 10.1101/2022.04.06.487011 CrossRef Full Text | Google Scholar Sheraz M. A. Kazi S. H. Ahmed S. Anwar Z. Ahmad I. (2014). Photo, thermal and chemical degradation of riboflavin. Beilstein J. Org. Chem. 10, 19992012. 10.3762/bjoc.10.208 PubMed Abstract | CrossRef Full Text | Google Scholar Song Y. Yang J. Law A. D. (2022). Age-dependent effects of blue light exposure on lifespan, neurodegeneration, and mitochondria physiology in Drosophila melanogaster . Google Scholar Tsao J. Y. Coltrin M. E. Crawford M. H. Simmons J. A. (2010). Solid-state lighting: An integrated human factors, technology, and economic perspective. Proc. IEEE 98 (7), 11621179. 10.1109/JPROC.2009.2031669 CrossRef Full Text | Google Scholar van den Berg R. A. Hoefsloot H. C. Westerhuis J. A. Smilde A. K. van der Werf M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics 7, 142. 10.1186/1471-2164-7-142 PubMed Abstract | CrossRef Full Text | Google Scholar van Rossum G. (1995). Python tutorial (R 9526). Article R 9526Avialable at: https://ir.cwi.nl/pub/5007. Google Scholar Van Vranken J. G. Bricker D. K. Dephoure N. Gygi S. P. Cox J. E. Thummel C. S. (2014). SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell. Metab. 20 (2), 241252. 10.1016/j.cmet.2014.05.012 PubMed Abstract | CrossRef Full Text | Google Scholar Zou Y.-X. Ruan M.-H. Luan J. Feng X. Chen S. Chu Z.-Y. (2017). Anti-aging effect of riboflavin via endogenous antioxidant in fruit fly Drosophila melanogaster . J. Nutr. Health Aging 21 (3), 314319. 10.1007/s12603-016-0752-8 PubMed Abstract | CrossRef Full Text | Google Scholar
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.ifdi.com.cn
      fwezzq.com.cn
      www.letvfilm.com.cn
      www.hyjbj6.com.cn
      keaibo.com.cn
      www.fsduoxin.com.cn
      rbtaobao.com.cn
      rkchain.com.cn
      www.qiuyue.net.cn
      www.mi2yodf.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p